Existence of positive solutions for a semilinear Schrodinger equation in RN

被引:0
|
作者
Fang, Houqing [1 ,2 ]
Wang, Jun [2 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210096, Jiangsu, Peoples R China
[2] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
来源
基金
中国博士后科学基金;
关键词
multi-bump solution; semilinear Schrodinger equation; variational methods; MULTI-BUMP SOLUTIONS; SCALAR FIELD-EQUATIONS; BOUND-STATES; STANDING WAVES; SEMICLASSICAL STATES; CRITICAL FREQUENCY; ELLIPTIC-EQUATIONS; PRESCRIBED NUMBER; NODAL SOLUTIONS; DOMAINS;
D O I
10.1186/s13661-014-0270-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of multi-bump solutions for the semilinear Schrodinger equation -Delta u + (1 + lambda a(x))u = (1 -lambda b(x))vertical bar u vertical bar(p-2)u, for all u is an element of H-1(R-N), where N >= 1, 2 < p < 2N/(N - 2) if N >= 3, p > 2 if N = 2 or N = 1, a(x) is an element of C(R-N) and a(x) > 0, b(x) is an element of C(R-N) and b(x) > 0. For any n is an element of N, we prove that there exists lambda(n) > 0 such that, for 0 < lambda < lambda(n), the equation has an n-bump positive solution. Moreover, the equation has more and more multi-bump positive solutions as lambda -> 0.
引用
收藏
页数:21
相关论文
共 50 条