Semantic Video Entity Linking based on Visual Content and Metadata

被引:6
|
作者
Li, Yuncheng [1 ]
Yang, Xitong [1 ]
Luo, Jiebo [1 ]
机构
[1] Univ Rochester, Dept Comp Sci, Rochester, NY 14627 USA
关键词
D O I
10.1109/ICCV.2015.524
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video entity linking, which connects online videos to the related entities in a semantic knowledge base, can enable a wide variety of video based applications including video retrieval and video recommendation. Most existing systems for video entity linking rely on video metadata. In this paper, we propose to exploit video visual content to improve video entity linking. In the proposed framework, videos are first linked to entity candidates using a text-based method. Next, the entity candidates are verified and reranked according to visual content. In order to properly handle large variations in visual content matching, we propose to use Multiple Instance Metric Learning to learn a "set to sequence" metric for this specific matching problem. To evaluate the proposed framework, we collect and annotate 1912 videos crawled from the YouTube open API. Experiment results have shown consistent gains by the proposed framework over several strong baselines.
引用
收藏
页码:4615 / 4623
页数:9
相关论文
共 50 条
  • [1] Content based editing of semantic video metadata
    Madhwacharyula, CL
    Kankanhalli, MS
    Mulhem, P
    2004 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXP (ICME), VOLS 1-3, 2004, : 33 - 36
  • [2] Semantic Video Entity Linking
    Grams, Tim
    Li, Honglin
    Tong, Bo
    Shaban, Ali
    Weller, Tobias
    SEMANTIC WEB: ESWC 2022 SATELLITE EVENTS, 2022, 13384 : 129 - 132
  • [3] A Semantic Metadata Describing Video Information Based On Ontology
    Song Wenfei
    Tian Wenya
    Shen Cailiang
    NEW TRENDS AND APPLICATIONS OF COMPUTER-AIDED MATERIAL AND ENGINEERING, 2011, 186 : 418 - +
  • [4] Visual Entity Linking
    Tilak, Neha
    Gandhi, Sunil
    Oates, Tim
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 665 - 672
  • [5] Entity Linking Based on Graph Model and Semantic Representation
    Ma, Ningyu
    Liu, Xiao
    Gao, Yulun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 561 - 571
  • [6] Chinese Short Text Entity Linking Based On Semantic Similarity and Entity Correlation
    Zhao, Yan
    Wang, Yun
    Yang, Na
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 426 - 431
  • [7] Entity Linking with a Unified Semantic Representation
    Guo, Zhaochen
    Barbosa, Denilson
    WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 1305 - 1309
  • [8] Entity Linking and Retrieval for Semantic Search
    Meij, Edgar
    Balog, Krisztian
    Odijk, Daan
    WSDM'14: PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2014, : 683 - 683
  • [9] Semantic web technologies for video surveillance metadata
    Poppe, Chris
    Martens, Gaetan
    De Potter, Pieterjan
    Van de Walle, Rik
    MULTIMEDIA TOOLS AND APPLICATIONS, 2012, 56 (03) : 439 - 467
  • [10] Semantic web technologies for video surveillance metadata
    Chris Poppe
    Gaëtan Martens
    Pieterjan De Potter
    Rik Van de Walle
    Multimedia Tools and Applications, 2012, 56 : 439 - 467