Research Note: A unifying framework for the widely used stabilization of potential field inverse problems

被引:15
|
作者
Vatankhah, Saeed [1 ,2 ]
Renaut, Rosemary Anne [3 ]
Liu, Shuang [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan, Peoples R China
[2] Univ Tehran, Inst Geophys, Tehran, Iran
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ USA
基金
国家重点研发计划;
关键词
Potential fields; Inverse theory; <mml; math altimg="urn; x-wiley; 00168025; media; gpr12926; gpr12926-math-0001" display="inline"><mml; msub><mml; mi>L</mml; mi><mml; mi>p</mml; mi></mml; msub></mml; math>-norm stabilizers; sparsity regularization; 3-D INVERSION; GRAVITY; MINIMIZATION; CONSTRAINTS; ALGORITHM;
D O I
10.1111/1365-2478.12926
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a brief review of the widely used and well-known stabilizers in the inversion of potential field data. These include stabilizers that use L-2, L-1 and L-0 norms of the model parameters and the gradients of the model parameters. These stabilizers may all be realized in a common setting using two general forms with different weighting functions. Moreover, we show that this unifying framework encompasses the use of additional stabilizations which are not common for potential field inversion.
引用
收藏
页码:1416 / 1421
页数:6
相关论文
共 17 条
  • [1] A NOTE ON INVERSE PROBLEMS IN POTENTIAL SCATTERING
    VIANO, GA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 63 (02): : 581 - +
  • [2] COMPUTABLE OBJECT FUNCTIONS AND MODELS USED IN INVERSE POTENTIAL-FIELD PROBLEMS
    ZIDAROV, DP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1990, 43 (03): : 37 - 39
  • [3] THE CONVERGENCE OF METHODS OF STABILIZATION IN INVERSE PROBLEMS OF POTENTIAL-THEORY
    DANILOV, VL
    ZHDANOV, MS
    SHULMAN, II
    DOKLADY AKADEMII NAUK SSSR, 1981, 260 (04): : 837 - 841
  • [4] ADAPTIVE ALGORITHMS FOR SOLVING POTENTIAL-FIELD INVERSE PROBLEMS
    BULAKH, YG
    KORCHAGIN, IN
    MARKOVA, MN
    PAK, AV
    TIMOSHENKO, VI
    GEOPHYSICAL JOURNAL, 1982, 4 (01): : 99 - 103
  • [5] COMPARISON OF FIELD THEORETIC AND POTENTIAL INVERSE PROBLEMS IN PION-NUCLEUS SCATTERING
    FRIEDENBERG, RA
    WEISS, DL
    PHYSICAL REVIEW C, 1976, 14 (01): : 204 - 210
  • [6] POINT (DIPOLE) SOLUTIONS OF INVERSE POTENTIAL FIELD PROBLEMS - MASS-PRESSING METHOD
    ZIDAROV, DP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1972, 25 (10): : 1347 - 1350
  • [7] Lame Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems
    Hubmer, Simon
    Sherina, Ekaterina
    Neubauer, Andreas
    Scherzer, Otmar
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (02): : 1268 - 1293
  • [8] Four-Dimensional Anisotropic Diffusion Framework With PDEs for Light Field Regularization and Inverse Problems
    Allain, Pierre
    Guillo, Laurent
    Guillemot, Christine
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 109 - 124
  • [9] Research biography of a distinguished expert in the field of inverse problems: Professor Michael Victor Klibanov
    Klibanov, Michael Victor
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (01): : 1 - 4
  • [10] Research biography of a distinguished expert in the field of inverse problems: Professor Eric Todd Quinto
    Agranovsky, Mark
    Boman, Jan
    Hasanov, Alemdar
    Felea, Raluca
    Frikel, Jurgen
    Krishnan, Venky
    Novikov, Roman
    Ramlau, Ronny
    Sebu, Cristiana
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (04): : 613 - 617