TORIC INTEGRABLE GEODESIC FLOWS IN ODD DIMENSIONS

被引:0
|
作者
Lee, Christopher R. [1 ]
Tolman, Susan [2 ]
机构
[1] Univ Portland, Dept Math, Portland, OR 97203 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
TORUS ACTIONS; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q be a compact, connected n-dimensional Riemannian manifold, and assume that the geodesic flow is toric integrable. If n not equal 3 is odd, or if pi(1)(Q) is infinite, we show that the cosphere bundle of Q is equivariantly contactomorphic to the cosphere bundle of the torus T-n. As a consequence, Q is homeomorphic to T-n.
引用
收藏
页码:1013 / 1022
页数:10
相关论文
共 50 条