Real interpolation of domains of sectorial operators on Lp-spaces

被引:3
|
作者
Kucherenko, T [1 ]
Weis, L
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
关键词
sectorial operators; real interpolation; representation of regular operators; H-infinity-calculus;
D O I
10.1016/j.jmaa.2005.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a sectorial operator on a non-atomic L-p-space, I <= p < infinity, whose resolvent consists of integral operators, or more generally, has a diffuse representation. Then the fractional domain spaces D(A(alpha)) for alpha epsilon (0, 1) do not coincide with the real interpolation spaces of (L-q, D(A)). As a consequence, we obtain that no such operator A has a bounded H-infinity-calculus if p = 1. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 50 条