Nonlinear simulation of multiple toroidal Alfven eigenmodes in tokamak plasmas

被引:7
|
作者
Zhu, Xiao-Long [1 ]
Wang, Feng [1 ]
Wang, Zheng-Xiong [1 ]
机构
[1] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Sch Phys, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
tokamak; toroidal Alfven eigenmode; wave-particle interaction; beam ion loss; PHYSICS; LOSSES;
D O I
10.1088/1674-1056/ab610e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear evolution of multiple toroidal Alfven eigenmodes (TAEs) driven by fast ions is self-consistently investigated by kinetic simulations in toroidal plasmas. To clearly identify the effect of nonlinear coupling on the beam ion loss, simulations over single-n modes are also carried out and compared with those over multiple-n modes, and the wave-particle resonance and particle trajectory of lost ions in phase space are analyzed in detail. It is found that in the multiple-n case, the resonance overlap occurs so that the fast ion loss level is rather higher than the sum loss level that represents the summation of loss over all single-n modes in the single-n case. Moreover, increasing fast ion beta beta(h) can not only significantly increase the loss level in the multiple-n case but also significantly increase the loss level increment between the single-n and multiple-n cases. For example, the loss level in the multiple-n case for beta(h) = 6.0% can even reach 13% of the beam ions and is 44% higher than the sum loss level calculated from all individual single-n modes in the single-n case. On the other hand, when the closely spaced resonance overlap occurs in the multiple-n case, the release of mode energy is increased so that the widely spaced resonances can also take place. In addition, phase space characterization is obtained in both single-n and multiple-n cases.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nonlinear frequency chirping of toroidal Alfven eigenmodes in tokamak plasmas
    Zhu, J.
    Ma, Z. W.
    Fu, G. Y.
    NUCLEAR FUSION, 2014, 54 (12)
  • [2] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
    朱霄龙
    王丰
    王正汹
    Chinese Physics B, 2020, 29 (02) : 400 - 409
  • [3] Nonlinear dynamics of Alfven eigenmodes in toroidal plasmas
    Chen, L
    Zonca, F
    Santoro, RA
    Hu, G
    PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (11) : 1823 - 1829
  • [4] Nonlinear dynamics of Alfven eigenmodes in toroidal plasmas
    Univ of California, Irvine, United States
    Plasma Phys Controlled Fusion, 11 (1823-1829):
  • [5] Kinetic toroidal Alfven eigenmodes in finite-β tokamak plasmas
    Zheng, LJ
    Chen, L
    PHYSICS OF PLASMAS, 1998, 5 (04) : 1056 - 1061
  • [6] Kinetic damping of radially localized kinetic toroidal Alfven eigenmodes in tokamak plasmas
    Shahzad, M.
    Rizvi, H.
    Panwar, A.
    Ryu, C. M.
    Rhee, T.
    PHYSICS OF PLASMAS, 2020, 27 (07)
  • [7] Simulation of Alfven eigenmodes destabilized by energetic electrons in tokamak plasmas
    Wang, Jialei
    Todo, Yasushi
    Wang, Hao
    Wang, Zheng-Xiong
    NUCLEAR FUSION, 2020, 60 (11)
  • [8] Multiple toroidal Alfven eigenmodes with a single toroidal mode number in KSTAR plasmas
    Rizvi, H.
    Ryu, C. M.
    Lin, Z.
    NUCLEAR FUSION, 2016, 56 (11)
  • [9] The effects of electron cyclotron heating and current drive on toroidal Alfven eigenmodes in tokamak plasmas
    Sharapov, S. E.
    Garcia-Munoz, M.
    Van Zeeland, M. A.
    Bobkov, B.
    Classen, I. G. J.
    Ferreira, J.
    Figueiredo, A.
    Fitzgerald, M.
    Galdon-Quiroga, J.
    Gallart, D.
    Geiger, B.
    Gonzalez-Martin, J.
    Johnson, T.
    Lauber, P.
    Mantsinen, M.
    Nabais, F.
    Nikolaeva, V.
    Rodriguez-Ramos, M.
    Sanchis-Sanchez, L.
    Schneider, P. A.
    Snicker, A.
    Vallejos, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (01)
  • [10] Bursting toroidal Alfven eigenmodes in KSTAR plasmas
    Hole, M. J.
    Qu, Z. S.
    Layden, B.
    Michael, C. A.
    Woo, M. H.
    Bak, J. G.
    Kim, J.
    Hezaveh, H.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (02)