Plasma viscosity in spherical ICF implosion simulations

被引:4
|
作者
Vold, E. [1 ]
Joglekar, A. [2 ]
Ortega, M. [3 ]
Moll, R. [4 ]
Fenn, D. [5 ]
Molvig, K. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Univ New Mexico, Albuquerque, NM 87131 USA
[4] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[5] Florida State Univ, Tallahassee, FL 32306 USA
关键词
D O I
10.1088/1742-6596/717/1/012056
中图分类号
O59 [应用物理学];
学科分类号
摘要
Inertial confinement fusion (ICF) hydrodynamic codes often ignore the effects of viscosity though recent research indicates plasma viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. A Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport, and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation, is used to study differences between ICF implosions with and without plasma viscosity and to examine the role of artificial viscosity in a Lagrangian implosion simulation. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, fuel compression, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and this study suggests that artificial viscosity may provide an unphysical stability in implosion simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
    Vold, E. L.
    Joglekar, A. S.
    Ortega, M. I.
    Moll, R.
    Fenn, D.
    Molvig, K.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (11)
  • [2] STABILITY OF A SPHERICAL SHOCK-WAVE IN THE IMPLOSION OF AN ICF TARGET
    WILKE, N
    SITT, B
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 720 - 721
  • [3] NON-SPHERICAL IMPLOSION OF A DENSE THERMONUCLEAR PLASMA
    WINTERBERG, F
    [J]. JOURNAL OF PLASMA PHYSICS, 1977, 18 (DEC) : 473 - 485
  • [4] IMPLOSION SYMMETRY AND BURN EFFICIENCY IN ICF
    ATZENI, S
    [J]. LASER AND PARTICLE BEAMS, 1991, 9 (02) : 233 - 245
  • [5] NUMERICAL SIMULATIONS OF SCYLLA 1-B PLASMA IMPLOSION
    GRIBBLE, RF
    MCKENNA, K
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1347 - 1347
  • [6] A symmetry preserving scheme for three-dimensional Lagrangian radiation hydrodynamic simulations of ICF capsule implosion
    Guo, Shaodong
    Zhang, Mingyu
    Zhou, Haibing
    Xiong, Jun
    Zhang, Shudao
    [J]. COMPUTERS & FLUIDS, 2019, 195
  • [7] Drive Asymmetry and the Origin of Turbulence in an ICF Implosion
    Thomas, V. A.
    Kares, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [8] Physics of ICF related multiwire array implosion
    Grabovsky, EV
    Alexandrov, VV
    Fedulov, MV
    Frolov, IN
    Mitrofanov, KN
    Nedoseev, SL
    Oleinik, GM
    Porofeev, IY
    Samokhin, AA
    Sasorov, PV
    Smirnov, VP
    Volkov, GS
    Zurin, MV
    Zukakishvili, GG
    [J]. PPC-2003: 14TH IEEE INTERNATIONAL PULSED POWER CONFERENCE, VOLS 1 AND 2, DIGEST OF TECHNICAL PAPERS, 2003, : 53 - 56
  • [9] Plasma Production during Implosion of Quasi-Spherical Wire Arrays
    Grabovski, E. V.
    Branitsky, A. V.
    Aleksandrov, V. V.
    Gritsuk, A. N.
    Mitrofanov, K. N.
    Frolov, I. N.
    Laukhin, Ya. N.
    Samokhin, A. V.
    Smirnov, V. P.
    Shishlov, A. O.
    Gribov, A. N.
    Rupasov, A. A.
    [J]. PLASMA PHYSICS REPORTS, 2019, 45 (07) : 657 - 661
  • [10] Plasma Production during Implosion of Quasi-Spherical Wire Arrays
    E. V. Grabovski
    A. V. Branitsky
    V. V. Aleksandrov
    A. N. Gritsuk
    K. N. Mitrofanov
    I. N. Frolov
    Ya. N. Laukhin
    A. V. Samokhin
    V. P. Smirnov
    A. O. Shishlov
    A. N. Gribov
    A. A. Rupasov
    [J]. Plasma Physics Reports, 2019, 45 : 657 - 661