A contribution to the identification of switched dynamical systems over finite fields

被引:0
|
作者
Phuoc Vo Tan [1 ]
Millerioux, G. [1 ]
Daafouz, Jamal [1 ]
机构
[1] Nancy Univ, Res Ctr Automat Control Nancy, CNRS, CRAN,CNRS 7039, Nancy, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address specific issues related to the problem of parameter identification for switched linear systems over finite fields. Peculiarities related to the consideration of finite fields are pointed out. In particular, one of the main contributions of the paper is the reconsideration of the usual Persistently Exciting conditions. Indeed they are important in that they guarantee unicity in the solution of the identification procedure but they actually do no longer make sense on finite fields. In this paper, we provide alternative conditions. Such an issue has a cryptographic interest since identification amounts to an attack in cryptography, that is a way of recovering the secret key played by the parameters of the dynamical system.
引用
收藏
页码:4429 / 4434
页数:6
相关论文
共 50 条
  • [1] On persistent excitations for the identification of switched linear dynamical systems over finite fields
    Millerioux, Gilles
    Daafouz, Jamal
    [J]. AUTOMATICA, 2014, 50 (12) : 3246 - 3252
  • [2] Monomial Dynamical Systems over Finite Fields
    Colon-Reyes, Omar
    Jarrah, Abdul Salam
    Laubenbacher, Reinhard
    Sturmfels, Bernd
    [J]. COMPLEX SYSTEMS, 2006, 16 (04): : 333 - 342
  • [3] Counting dynamical systems over finite fields
    Ostafe, Alina
    Sha, Min
    [J]. DYNAMICS AND NUMBERS, 2016, 669 : 187 - 203
  • [4] SHIFT DYNAMICAL-SYSTEMS OVER FINITE FIELDS
    NATHANSON, MB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 34 (02) : 591 - +
  • [5] EXPANSION OF ORBITS OF SOME DYNAMICAL SYSTEMS OVER FINITE FIELDS
    Gutierrez, Jaime
    Shparlinski, Igor E.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) : 232 - 239
  • [6] Preperiodic points of polynomial dynamical systems over finite fields
    Andersen, Aaron
    Garton, Derek
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (09) : 2307 - 2316
  • [7] Dynamical systems and formal group laws over finite fields
    Laubie, Francois
    [J]. JOURNAL OF NUMBER THEORY, 2007, 125 (01) : 133 - 148
  • [8] Monomial dynamical systems of dimension one over finite fields
    Sha, Min
    Hu, Su
    [J]. ACTA ARITHMETICA, 2011, 148 (04) : 309 - 331
  • [9] BETA DYNAMICAL SYSTEMS OVER THE FORMAL FIELDS
    Shen, Lu-Ming
    Jing, Huiping
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) : 454 - 465
  • [10] Fuzzy linear dynamical systems over fields
    Pushkov S.G.
    Tyryshkina V.A.
    [J]. Journal of Mathematical Sciences, 2008, 154 (3) : 379 - 385