LT Codes with Feedback: Accelerate the Distributed Matrix-Vector Multiplication with Stragglers

被引:0
|
作者
Yang, Xiao [1 ]
Jiang, Ming [1 ,2 ]
Zhao, Chunming [1 ,2 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing, Peoples R China
[2] Purple Mt Lab, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
rateless feedback codes; distributed computation; stragglers;
D O I
10.1109/ipccc47392.2019.8958745
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a coding scheme for distributed matrix-vector multiplication that builds upon the Luby transform (LT) codes with feedback. The ideal soliton distribution is utilized in our LT coding scheme to encode the sub-matrices. Besides, the belief propagation (BP) decoding algorithm is modified to cooperate with the feedback information. Compared with other coded distributed computations with straggling servers, our approach achieves lower computation latency when the overall delay incurred by the encoding, mapping and decoding process is considered. Furthermore, we compare the storage loads of different schemes and show that the LT coding with feedback has a strong comparative advantage in these straggler-tolerant computation scenarios.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Codes for Distributed Finite Alphabet Matrix-Vector Multiplication
    Haddadpour, Farzin
    Cadambe, Viveck R.
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1625 - 1629
  • [2] FAST AND EFFICIENT DISTRIBUTED MATRIX-VECTOR MULTIPLICATION USING RATELESS FOUNTAIN CODES
    Mallick, Ankur
    Chaudhari, Malhar
    Joshi, Gauri
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8192 - 8196
  • [3] Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication
    Mallick, Ankur
    Chaudhari, Malhar
    Sheth, Utsav
    Palanikumar, Ganesh
    Joshi, Gauri
    [J]. PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2019, 3 (03)
  • [4] Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication
    Mallick, Ankur
    Chaudhari, Malhar
    Sheth, Utsav
    Palanikumar, Ganesh
    Joshi, Gauri
    [J]. COMMUNICATIONS OF THE ACM, 2022, 65 (05) : 111 - 118
  • [5] Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication
    Mallick, Ankur
    Chaudhari, Malhar
    Sheth, Utsav
    Palanikumar, Ganesh
    Joshi, Gauri
    [J]. Performance Evaluation Review, 2020, 48 (01): : 95 - 96
  • [6] Stragglers in Distributed Matrix Multiplication
    Nissim, Roy
    Schwartz, Oded
    [J]. JOB SCHEDULING STRATEGIES FOR PARALLEL PROCESSING, JSSPP 2023, 2023, 14283 : 74 - 96
  • [7] Distributed Matrix-Vector Multiplication: A Convolutional Coding Approach
    Das, Anindya B.
    Ramamoorthy, Aditya
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 3022 - 3026
  • [8] Universally Decodable Matrices for Distributed Matrix-Vector Multiplication
    Ramamoorthy, Aditya
    Tang, Li
    Vontobel, Pascal O.
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1777 - 1781
  • [9] ACOUSTOOPTIC MATRIX-VECTOR MULTIPLICATION
    CAULFIELD, HJ
    RHODES, WT
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1981, 71 (12) : 1626 - 1626
  • [10] Balancing Computation and Communication in Distributed Sparse Matrix-Vector Multiplication
    Mi, Hongli
    Yu, Xiangrui
    Yu, Xiaosong
    Wu, Shuangyuan
    Liu, Weifeng
    [J]. 2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID, 2023, : 535 - 544