MAXIMUM OF CONTINUOUS VERSIONS OF POISSON AND NEGATIVE BINOMIAL-TYPE DISTRIBUTIONS

被引:1
|
作者
Withers, C. S. [1 ]
Nadarajah, S. [2 ]
机构
[1] Ind Res Ltd, Appl Math Grp, Lower Hutt, New Zealand
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
extreme values; Gumbel distribution; negative binomial distribution; Poisson distribution;
D O I
10.1137/S0040585X97985042
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let M-n be the maximum of a random sample from F(x) on R. It is known that there exists g(n) : R -> R such that g(n)(M-n) (L) under right arrow Y, nondegenerate, as n -> infinity if and only if (F) over bar (x)/(F) over bar (x-) -> 1 as x -> infinity, where (F) over bar (x) = 1-F(x). This condition holds for F continuous but fails, for example, for F Poisson and negative binomial. We consider the classes of distributions (F) over bar (x) = cx(beta) exp(alpha x) x(-x) {1+ o(1)} and (F) over bar (x) = dx(c) exp(-alpha x){1+ o(1)} as x -> infinity. These classes include the Poisson and negative binomial distributions for x an integer but not for general x. We show that (M-n - a(n))/b(n) (L) under righht arrow Y as n -> infinity for some a(n) and b(n), where Y is a Gumbel random variable with distribution function exp{- exp(-y)}, - infinity < y < infinity.
引用
收藏
页码:525 / U529
页数:4
相关论文
共 50 条