Proposal for chip-scale generation and verification of photonic dimers

被引:0
|
作者
Kim, Juhyeon [1 ]
Mastropietro, Donato [1 ]
Steel, Duncan [1 ]
Shen, Jung-Tsung [2 ]
Ku, Pei-Cheng [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, 1301 Beal Ave, Ann Arbor, MI 48109 USA
[2] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
BOUND-STATES; QUANTUM; EMISSION;
D O I
10.1063/5.0073090
中图分类号
O59 [应用物理学];
学科分类号
摘要
A semiconductor chip to generate photonic dimers, a quantum photonic state, is proposed and analyzed. The measurement scheme to validate the existence of dimers is also discussed. The design uses InAs epitaxial quantum dot structures coupled to weak laser pulses with the interaction tailored by a chiral nanophotonic waveguide. The performance is analyzed as a function of quantum dot misalignment. Greater than 50% excitation efficiency is still expected as long as the quantum dot is in the lower half of the chiral waveguide.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Proposal of Chip-Scale Generation and Verification of Photonic Dimers
    Kim, Juhyeon
    Mastropietro, Donato
    Steel, Duncan
    Shen, Jung-Tsung
    Ku, Pei-Cheng
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [2] Progress in Chip-Scale Photonic Sensing
    Jokerst, Nan Marie
    Luan, Lin
    Palit, Sabarni
    Royal, Matthew
    Dhar, Sulochana
    Brooke, Martin A.
    Tyler, Talmage, II
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2009, 3 (04) : 202 - 211
  • [3] Chip-scale Photonic Interconnects for Reconfigurable Computing
    Sharkawy, Ahmed
    Ebil, Ozgenc
    Zablocki, Mathew
    Shi, Shouyuan
    Prather, Dennis W.
    PHOTONIC AND PHONONIC CRYSTAL MATERIALS AND DEVICES X, 2010, 7609
  • [4] Devices and architectures for photonic chip-scale integration
    Ahn, J.
    Fiorentino, M.
    Beausoleil, R. G.
    Binkert, N.
    Davis, A.
    Fattal, D.
    Jouppi, N. P.
    McLaren, M.
    Santori, C. M.
    Schreiber, R. S.
    Spillane, S. M.
    Vantrease, D.
    Xu, Q.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 95 (04): : 989 - 997
  • [5] Devices and architectures for photonic chip-scale integration
    J. Ahn
    M. Fiorentino
    R. G. Beausoleil
    N. Binkert
    A. Davis
    D. Fattal
    N. P. Jouppi
    M. McLaren
    C. M. Santori
    R. S. Schreiber
    S. M. Spillane
    D. Vantrease
    Q. Xu
    Applied Physics A, 2009, 95 : 989 - 997
  • [6] Advances in Chip-Scale Quantum Photonic Technologies
    Lu, Liangliang
    Zheng, Xiaodong
    Lu, Yanqing
    Zhu, Shining
    Ma, Xiao-Song
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (12)
  • [7] What makes the best chip-scale photonic sensor?
    Kita, Derek M.
    Du, Qingyang
    Michon, Jerome
    Gu, Tian
    Luo, Zhengqian
    Johnson, Steven G.
    Hu, Juejun
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [8] Intimate monolithic integration of chip-scale photonic circuits
    Sabnis, VA
    Demir, HV
    Fidaner, O
    Zheng, JF
    Harris, JS
    Miller, DAB
    Li, N
    Wu, TC
    Chen, HT
    Houng, YM
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (06) : 1255 - 1265
  • [9] Chip-Scale Plasmonic Sum Frequency Generation
    Bai, Songang
    Fang, Ming
    Sha, Wei E. I.
    Qu, Yurui
    Jin, Zhongwei
    Tian, Jingyi
    Du, Kaikai
    Yu, Shaoliang
    Qiu, Cheng-Wei
    Qiu, Min
    Li, Qiang
    IEEE PHOTONICS JOURNAL, 2017, 9 (03):
  • [10] Advanced Progress on χ(3) Nonlinearity in Chip-Scale Photonic Platforms
    Kang, Zhe
    Mei, Chao
    Zhang, Luqi
    Zhang, Zhichao
    Evans, Julian
    Cheng, Yujun
    Zhu, Kun
    Zhang, Xianting
    Huang, Dongmei
    Li, Yuhua
    He, Jijun
    Wu, Qiang
    Yan, Binbin
    Wang, Kuiru
    Zhou, Xian
    Long, Keping
    Li, Feng
    Li, Qian
    Wang, Shaokang
    Yuan, Jinhui
    Wai, P. K. A.
    He, Sailing
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2021, 170 : 17 - 62