DASP: Dual-autoencoder Architecture for Skin Prediction

被引:0
|
作者
Bastos, Igor L. O. [1 ]
Melo, Victor H. C. [1 ]
Prates, Raphael F. [2 ]
Schwartz, William R. [1 ]
机构
[1] Univ Fed Minas Gerais, Smart Sense Lab, Belo Horizonte, MG, Brazil
[2] Univ Estadual Campinas, Dept Comp Sci, Campinas, Brazil
关键词
Human skin detection; Autoencoders; Composite loss; SEGMENTATION;
D O I
10.1007/978-3-031-06430-2_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel human skin detection approach based on the application of a dual autoencoder architecture, composed of models to detect background and skin zones concomitantly. This method, named Dual-Autoencoder Skin Predictor (DASP), associates the outputs of two autoencoders through a composite loss that minimizes the error between predicted skin/background areas and the groundtruth. More importantly, the composite loss penalizes overlapping zones between autoencoders predictions, leading our approach to better capture fine-grained and complementary information between skin and background. To combine semantic information with the skin color distribution, heavily tackled by handcrafted skin detection methods, our architecture relies on a main input that considers multiple colorspaces. Besides, a secondary input provides a standard skin/background patch vector to the model, granting information regarding their color distribution. Our experiments support the accurate performance of the proposed architecture and highlights the contributions of the composite loss and multiple inputs. For instance, DASP achieves the best and the second best results on Pratheepan and Mutual Guidance datasets, respectively.
引用
收藏
页码:429 / 441
页数:13
相关论文
共 50 条
  • [1] Hybrid Collaborative Recommendation via Dual-Autoencoder
    Dong, Bingbing
    Zhu, Yi
    Li, Lei
    Wu, Xindong
    [J]. IEEE ACCESS, 2020, 8 (08): : 46030 - 46040
  • [2] Representation learning via Dual-Autoencoder for recommendation
    Zhuang, Fuzhen
    Zhang, Zhiqiang
    Qian, Mingda
    Shi, Chuan
    Xie, Xing
    He, Qing
    [J]. NEURAL NETWORKS, 2017, 90 : 83 - 89
  • [3] Personalized recommendation with knowledge graph via dual-autoencoder
    Yang Yang
    Yi Zhu
    Yun Li
    [J]. Applied Intelligence, 2022, 52 : 6196 - 6207
  • [4] Personalized recommendation with knowledge graph via dual-autoencoder
    Yang, Yang
    Zhu, Yi
    Li, Yun
    [J]. APPLIED INTELLIGENCE, 2022, 52 (06) : 6196 - 6207
  • [5] Dual-AutoEncoder & Bipartite Graph Embedding for article recommendation
    Xi, Liang
    He, Dong
    Meng, Xianglong
    Hu, Qiaodan
    [J]. Soft Computing, 2024, 28 (13-14) : 7791 - 7806
  • [6] A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm
    Mahali, Muhammad Izzuddin
    Leu, Jenq-Shiou
    Darmawan, Jeremie Theddy
    Avian, Cries
    Bachroin, Nabil
    Prakosa, Setya Widyawan
    Faisal, Muhamad
    Putro, Nur Achmad Sulistyo
    [J]. SENSORS, 2023, 23 (14)
  • [7] Dual Decode Architecture for Dynamic Branch Prediction
    Bharadwaj, Vishnu P.
    Kohalli, Manjunath
    [J]. 2017 2ND INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2017, : 1140 - 1143
  • [8] A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data
    Murray, Brian
    Perera, Lokukaluge Prasad
    [J]. OCEAN ENGINEERING, 2020, 209
  • [9] Dual Contradistinctive Generative Autoencoder
    Parmar, Gaurav
    Li, Dacheng
    Lee, Kwonjoon
    Tu, Zhuowen
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 823 - 832
  • [10] Skin cancer detection through attention guided dual autoencoder approach with extreme learning machine
    Maurya, Ritesh
    Mahapatra, Satyajit
    Dutta, Malay Kishore
    Singh, Vibhav Prakash
    Karnati, Mohan
    Sahu, Geet
    Pandey, Nageshwar Nath
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):