Molecular Diagnosis and Survival Predicition of Glioma Patients by Using Machine-Learning based Radiomics Methods

被引:0
|
作者
Shi, Zhifeng [1 ]
Yu, Jinhua [2 ]
Qi, Zengxin [1 ]
Yang, Bojie [1 ]
Chen, Liang [1 ]
Mao, Ying [1 ]
Zhou, Liangfu [1 ]
机构
[1] Fudan Univ, Huashan Hosp, Dept Neurosurg, Shanghai, Peoples R China
[2] Fudan Univ, Dept Elect Engn, Shanghai, Peoples R China
来源
CANCER SCIENCE | 2018年 / 109卷
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IS4-5
引用
收藏
页码:289 / 289
页数:1
相关论文
共 50 条
  • [1] Application of Machine-learning based on Radiomics Features in Differential Diagnosis of Superficial Lymphadenopathy
    Lyu S.
    Zhang M.
    Yang L.
    Zhang B.
    Gao L.
    Yang L.
    Zhang Y.
    [J]. Current Medical Imaging, 2024, 20
  • [2] A study of MRI-based machine-learning methods for glioma grading
    Wang, Z.
    Xiao, X.
    He, K.
    Wu, D.
    Pang, P.
    Wu, T.
    [J]. INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2022, 20 (01): : 115 - 120
  • [3] Machine-learning approach to predict molecular subgroups of medulloblastoma using multiparametric MRI-based tumor radiomics
    Saju, Ann Christy
    Chatterjee, Abhishek
    Sahu, Arpita
    Gupta, Tejpal
    Krishnatry, Rahul
    Mokal, Smruti
    Sahay, Ayushi
    Epari, Sridhar
    Prasad, Maya
    Chinnaswamy, Girish
    Agarwal, Jai Prakash
    Goda, Jayant S.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1134):
  • [4] Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules
    Mokrane, Fatima-Zohra
    Lu, Lin
    Vavasseur, Adrien
    Otal, Philippe
    Peron, Jean-Marie
    Luk, Lyndon
    Yang, Hao
    Ammari, Samy
    Saenger, Yvonne
    Rousseau, Herve
    Zhao, Binsheng
    Schwartz, Lawrence H.
    Dercle, Laurent
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (01) : 558 - 570
  • [5] Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules
    Fatima-Zohra Mokrane
    Lin Lu
    Adrien Vavasseur
    Philippe Otal
    Jean-Marie Peron
    Lyndon Luk
    Hao Yang
    Samy Ammari
    Yvonne Saenger
    Herve Rousseau
    Binsheng Zhao
    Lawrence H. Schwartz
    Laurent Dercle
    [J]. European Radiology, 2020, 30 : 558 - 570
  • [6] Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging
    Hu, Guanjie
    Hu, Xinhua
    Yang, Kun
    Yu, Yun
    Jiang, Zijuan
    Liu, Yong
    Liu, Dongming
    Hu, Xiao
    Xiao, Hong
    Zou, Yuanjie
    You, Yongping
    Liu, Hongyi
    Chen, Jiu
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (01) : 129 - 135
  • [7] A machine-learning approach using pubic CT based on radiomics to estimate adult ages
    Zhang, Yiying
    Wang, Zhenping
    Liao, Yuting
    Li, Tiansheng
    Xu, Xiaoling
    Wu, Wenyuan
    Zhou, Jie
    Huang, Weiyuan
    Luo, Shishi
    Chen, Feng
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2022, 156
  • [8] Non-Invasive Prediction of Survival Time of Midline Glioma Patients Using Machine Learning on Multiparametric MRI Radiomics Features
    Deng, Da-Biao
    Liao, Yu-Ting
    Zhou, Jiang-Fen
    Cheng, Li-Na
    He, Peng
    Wu, Sheng-Nan
    Wang, Wen-Sheng
    Zhou, Quan
    [J]. FRONTIERS IN NEUROLOGY, 2022, 13
  • [9] Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients
    Yan, Jing
    Zhang, Bin
    Zhang, Shuaitong
    Cheng, Jingliang
    Liu, Xianzhi
    Wang, Weiwei
    Dong, Yuhao
    Zhang, Lu
    Mo, Xiaokai
    Chen, Qiuying
    Fang, Jin
    Wang, Fei
    Tian, Jie
    Zhang, Shuixing
    Zhang, Zhenyu
    [J]. NPJ PRECISION ONCOLOGY, 2021, 5 (01)
  • [10] Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients
    Jing Yan
    Bin Zhang
    Shuaitong Zhang
    Jingliang Cheng
    Xianzhi Liu
    Weiwei Wang
    Yuhao Dong
    Lu Zhang
    Xiaokai Mo
    Qiuying Chen
    Jin Fang
    Fei Wang
    Jie Tian
    Shuixing Zhang
    Zhenyu Zhang
    [J]. npj Precision Oncology, 5