A note on mass equidistribution of holomorphic Siegel modular forms

被引:1
|
作者
Liu, Sheng-Chi [1 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
关键词
Mass equidistribution; Saito-Kurokawa lifting; Ikeda lifting; DIRICHLET SERIES; CUSP FORMS;
D O I
10.1016/j.jnt.2016.06.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-f is an element of S-k(SP2n(Z)) be the Ikeda lifting of a Hecke eigenform f is an element of S2k-n(SL2(Z)) with the normalization < F-f, F-f > = 1. Let E(Z; s) denote the Klingen Eisenstein series. In this paper we verify that lim(k ->infinity) integral E(Z; n/2 + it)vertical bar F-f (Z)vertical bar(2) (det Y)(k)d mu = 0 Sp(2n)(Z)\S-n which is predicted by the mass equidistribution conjecture of Cogdell and Luo [CL]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条