Parameterized linear matrix inequality techniques in fuzzy control system design

被引:930
|
作者
Tuan, HD
Apkarian, P
Narikiyo, T
Yamamoto, Y
机构
[1] Toyota Technol Inst, Dept Control & Informat, Nagoya, Aichi 4688511, Japan
[2] CERT, ONERA, F-31055 Toulouse, France
[3] Aichi Steel Ltd, Aichi 4770036, Japan
关键词
fuzzy systems; parameterized linear matrix inequality (PLMI);
D O I
10.1109/91.919253
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes different parameterized linear matrix inequality (PLMI) characterizations for fuzzy control systems. These PLMI characterizations are, in turn, relaxed into pure LMI programs, which provides tractable and effective techniques for the design of suboptimal fuzzy control systems. The advantages of the proposed methods over earlier ones are then discussed and illustrated through numerical examples and simulations.
引用
收藏
页码:324 / 332
页数:9
相关论文
共 50 条
  • [1] Relaxed Conditions for Parameterized Linear Matrix Inequality in the Form of Double Fuzzy Summation
    Kim, Do Wan
    Lee, Donghwan
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (03) : 1608 - 1612
  • [2] Nonlinear H∞ control for an integrated suspension system via parameterized linear matrix inequality characterizations
    Tuan, HD
    Ono, E
    Apkarian, P
    Hosoe, S
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (01) : 175 - 185
  • [3] A linear matrix inequality approach for the control of uncertain fuzzy
    Lam, HK
    Leung, FHF
    Tam, PKS
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2002, 22 (04): : 20 - 25
  • [4] Linear matrix inequality conditions for robustness and control design
    D'Andrea, R
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2001, 11 (06) : 541 - 554
  • [5] Fuzzy sliding mode control for three-tank system based on linear matrix inequality
    Mellouli, El Mehdi
    Alfidi, Mohammed
    Boumhidi, Ismail
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2018, 12 (02) : 237 - 250
  • [6] A new method for variable structure control system design: A linear matrix inequality approach
    Choi, HH
    [J]. AUTOMATICA, 1997, 33 (11) : 2089 - 2092
  • [7] Parameterized bilinear matrix inequality techniques for Script capital H∞ gain-scheduling proportional integral derivative control design
    Shi, Ye
    Tuan, Hoang Duong
    Apkarian, Pierre
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (10) : 3886 - 3905
  • [8] Robust Power System Stabilizer design for an industrial power system in Taiwan using linear matrix inequality techniques
    Tsai, HC
    Chu, CC
    Chou, YS
    [J]. 2004 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1 AND 2, 2004, : 1761 - 1766
  • [9] The iterative linear matrix inequality suboptimal design of decentralized ∞ control
    Yongfang Xie
    Weihua Gui
    Xiaoying Liu
    Min Wu
    [J]. Journal of Central South University of Technology, 1999, 6 (2): : 130 - 133
  • [10] Fuzzy static output feedback control based on iterative linear matrix inequality
    Xu, Tao
    Yang, Xiao-Guang
    Zuo, Wen-Jie
    Yu, Zheng-Lei
    Hao, Liang
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (03): : 795 - 799