On C2-cofiniteness of parafermion vertex operator algebras

被引:24
|
作者
Dong, Chongying [2 ,3 ]
Wang, Qing [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Sichuan Univ, Sch Math, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
Lie algebras; Vertex operator algebras; MODULAR-INVARIANCE; REPRESENTATIONS; REGULARITY; VIRASORO;
D O I
10.1016/j.jalgebra.2010.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that any locally regular vertex operator algebra is C-2-cofinite and the regularity of parafermion vertex operator algebras associated to integrable highest weight modules for affine Kac-Moody algebra A(1)((1)) implies the C-2-cofiniteness of parafermion vertex operator algebras associated to integrable highest weight modules for any affine Kac-Moody algebra. In particular, the parafermion vertex operator algebra associated to an integrable highest weight module of small level for any affine Kac-Moody algebra is C-2-cofinite and has only finitely many irreducible modules. Also, the parafermion vertex operator algebras with level 1 are determined explicitly. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:420 / 431
页数:12
相关论文
共 50 条