A New Distribution of Stock Market Return by Schrodinger Equation

被引:0
|
作者
Liu Haijun [1 ]
Ren Guobiao [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
关键词
Stock return; Schrodinger equation; delta function potential well; Fatted tail; Kurtosis; DYNAMICS; PRICES; INDEX; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new distribution of stock market return by Schrodinger equation. Firstly, we assume that a stock market behaves as a particle evolving in a delta function potential well and deduce out that the stock market return has an exponential distribution. Secondly, we test the model and get that the model has the same effectiveness as the Levy stable distribution by daily data of Chinese and American stock markets. Thirdly, we investigate kurtosis for different time units by high frequency data and find that the kurtosis becomes larger as the time unit gets smaller. Lastly, we give some economic analysis on the new distribution.
引用
收藏
页码:8595 / 8599
页数:5
相关论文
共 50 条
  • [1] Temporal evolution of the return distribution in the Korean stock market
    Chae, S
    Jung, WS
    Yang, JS
    Moon, HT
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (02) : 313 - 317
  • [2] Precision Measurement of the Return Distribution Property of the Chinese Stock Market Index
    Liu, Peng
    Zheng, Yanyan
    [J]. ENTROPY, 2023, 25 (01)
  • [3] New evidence of quarterly return patterns in the Spanish stock market
    Ortiz, Cristina
    Maria Ortiz de Zarate, Jose
    Vicente, Luis
    [J]. APPLIED ECONOMICS LETTERS, 2015, 22 (13) : 1025 - 1029
  • [4] MEDIA COVERAGE AND STOCK RETURN IN THE TAIWAN STOCK MARKET
    Wang, Kuei-Yuan
    Chen, Chien-Kuo
    Wei, Hsiao-Chi
    [J]. ACTA OECONOMICA, 2015, 65 : 35 - 53
  • [5] Microscopic spin model for the dynamics of the return distribution of the Korean stock market index
    Yang, JS
    Chae, S
    Jung, WS
    Moon, HT
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 363 (02) : 377 - 382
  • [6] Distribution of Return Transition for Bohm-Vigier Stochastic Mechanics in Stock Market
    Liu, Chang
    Chang, Chuo
    Chang, Zhe
    [J]. SYMMETRY-BASEL, 2023, 15 (07):
  • [7] Stock Market Feedback Trading, Fat-tail Distribution and Return Autocorrelation
    Zhao Peng-ju
    Liu Yu-min
    [J]. 2008 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (15TH), VOLS I AND II, CONFERENCE PROCEEDINGS, 2008, : 1269 - +
  • [9] Return seasonalities in the Chinese stock market
    Meng, Chen
    Du, Qingjie
    Shu, Haibing
    [J]. PACIFIC-BASIN FINANCE JOURNAL, 2024, 85
  • [10] Celebrity endorsement and stock market return
    Prentice, Catherine
    Zhang, Lei
    [J]. MARKETING INTELLIGENCE & PLANNING, 2017, 35 (04) : 529 - 543