Decentralized Dynamic Task Allocation Using Overlapping Potential Games

被引:18
|
作者
Chapman, Archie C. [1 ]
Micillo, Rosa Anna [2 ]
Kota, Ramachandra [1 ]
Jennings, Nicholas R. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Naples 2, Dept Informat Engn, Aversa, CE, Italy
来源
COMPUTER JOURNAL | 2010年 / 53卷 / 09期
基金
英国工程与自然科学研究理事会;
关键词
ALADDIN special issue; decentralized technique for planning agent schedules in dynamic task allocation problems; stochastic game formulation; SYSTEMS;
D O I
10.1093/comjnl/bxq023
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper reports on a novel decentralized technique for planning agent schedules in dynamic task allocation problems. Specifically, we use a stochastic game formulation of these problems in which tasks have varying hard deadlines and processing requirements. We then introduce a new technique for approximating this game using a series of static potential games, before detailing a decentralized method for solving the approximating games that uses the distributed stochastic algorithm. Finally, we discuss an implementation of our approach to a task allocation problem in the RoboCup Rescue disaster management simulator. The results show that our technique performs comparably to a centralized task scheduler (within 6% on average), and also, unlike its centralized counterpart, it is robust to restrictions on the agents' communication and observation ranges.
引用
收藏
页码:1462 / 1477
页数:16
相关论文
共 50 条
  • [1] Dynamic, Decentralized Task Allocation for UAS Swarms
    Beason, Jordan W.
    Hurlock, Gregory
    Kim, Dongbin
    Manjunath, Pratheek
    [J]. UNMANNED SYSTEMS TECHNOLOGY XXVI, 2024, 13055
  • [2] Analysis of Evolved Response Thresholds for Decentralized Dynamic Task Allocation
    Mathias H.D.
    Wu A.S.
    Dang D.
    [J]. ACM Transactions on Evolutionary Learning and Optimization, 2022, 2 (02):
  • [3] Decentralized Task Allocation Using Local Information Consistency Assumptions
    Johnson, Luke B.
    Choi, Han-Lim
    Ponda, Sameera S.
    How, Jonathan P.
    [J]. JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2017, 14 (02): : 103 - 122
  • [4] Decentralized Task Allocation in Multi-Agent Systems Using a Decentralized Genetic Algorithm
    Patel, Ruchir
    Rudnick-Cohen, Eliot
    Azarm, Shapour
    Otte, Michael
    Xu, Huan
    Herrmann, Jeffrey W.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 3770 - 3776
  • [5] Agents Preferences in Decentralized Task Allocation
    Hoogendoorn, Mark
    Gini, Maria L.
    [J]. ECAI 2008, PROCEEDINGS, 2008, 178 : 398 - +
  • [6] A market protocol for decentralized task allocation
    Walsh, WE
    Wellman, MP
    [J]. INTERNATIONAL CONFERENCE ON MULTI-AGENT SYSTEMS, PROCEEDINGS, 1998, : 325 - 332
  • [7] Comparing Decentralized Ongoing Task Allocation
    Kazakova, Vera A.
    Sukthankar, Gita R.
    [J]. 2020 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2020), 2020, : 405 - 410
  • [8] Preferences of agents in decentralized task allocation
    Hoogendoorn, Mark
    Gini, Maria
    [J]. AI COMMUNICATIONS, 2009, 22 (03) : 143 - 152
  • [9] Using decentralized clustering for task allocation in networks with reconfigurable helper units
    Merkle, Daniel
    Middendorf, Martin
    Scheidler, Alexander
    [J]. SELF-ORGANIZING SYSTEMS, PROCEEDINGS, 2006, 4124 : 137 - 147
  • [10] On a dynamic and decentralized energy-aware technique for multi-robot task allocation
    Bagchi, Menaxi J.
    Nair, Shivashankar B.
    Das, Pradip K.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 180