Error estimates of the real inversion formulas of the Laplace transform

被引:3
|
作者
Amano, K [1 ]
Saitoh, S
Yamamoto, M
机构
[1] Gunma Univ, Fac Engn, Dept Math, Kiryu, Gumma 3768515, Japan
[2] Univ Tokyo, Dept Math Sci, Tokyo 1538914, Japan
关键词
Laplace transform; real inversion formula; Bergman-Selberg space; error estimate; Mellin transform; Gauss formula; convolution; reproducing kernel; Dirichlet series;
D O I
10.1080/10652460008819284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be the Laplace transform of F = F(t) such that (0)integral (infinity) or \F(t)](2)t(1-2q) dt < <infinity> for some q > 0. We set F-N(t) = (0)integral (infinity) f(x) e (-xt) P-N,P-q(xt) dx (N = 0, 1, 2, ...) for the polynomials [GRAPHICS] Let max (1/2, 2q - 1) < <alpha> < 1 and let <beta> > 0 satisfy alpha less than or equal to beta < q + <alpha>/2. If the function f(x) satisfies f(z)z(beta) is an element of Hq-beta+alpha /2(R+), where Hq-beta+alpha /2(R+) is the Bergman-Selberg space on the right half complex plane {Re z > 0}, then the error estimate as N --> infinity \F(t) - F-N(t)\ = t(q-1+alpha /2) o(N(1-2 alpha)/4) is given. Here o(N(1-2 alpha)/4) is independent of t. Moreover we characterize functions F guaranteeing the above error estimate.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 50 条