Reliability in room-temperature negative differential resistance characteristics of low-aluminum content AlGaN/GaN double-barrier resonant tunneling diodes

被引:66
|
作者
Bayram, C. [1 ]
Vashaei, Z. [1 ]
Razeghi, M. [1 ]
机构
[1] Northwestern Univ, Ctr Quantum Devices, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
关键词
GAN; ALN;
D O I
10.1063/1.3515418
中图分类号
O59 [应用物理学];
学科分类号
摘要
AlGaN/GaN resonant tunneling diodes (RTDs), consisting of 20% (10%) aluminum-content in double-barrier (DB) active layer, were grown by metal-organic chemical vapor deposition on freestanding polar (c-plane) and nonpolar (m-plane) GaN substrates. RTDs were fabricated into 35-mu m-diameter devices for electrical characterization. Lower aluminum content in the DB active layer and minimization of dislocations and polarization fields increased the reliability and reproducibility of room-temperature negative differential resistance (NDR). Polar RTDs showed decaying NDR behavior, whereas nonpolar ones did not significantly. Averaging over 50 measurements, nonpolar RTDs demonstrated a NDR of 67 Omega, a current-peak-to-valley ratio of 1.08, and an average oscillator output power of 0.52 mW. (C) 2010 American Institute of Physics. [doi:10.1063/1.3515418]
引用
收藏
页数:3
相关论文
共 38 条
  • [1] NEGATIVE DIFFERENTIAL RESISTANCE AT ROOM-TEMPERATURE FROM RESONANT TUNNELING IN GAINAS/INP DOUBLE-BARRIER HETEROSTRUCTURES
    RAZEGHI, M
    TARDELLA, A
    DAVIES, RA
    LONG, AP
    KELLY, MJ
    BRITTON, E
    BOOTHROYD, C
    STOBBS, WM
    [J]. ELECTRONICS LETTERS, 1987, 23 (03) : 116 - 117
  • [2] Demonstration of highly repeatable room temperature negative differential resistance in large area AlN/GaN double-barrier resonant tunneling diodes
    Zhang, HePeng
    Xue, JunShuai
    Fu, YongRui
    Li, LanXing
    Sun, ZhiPeng
    Yao, JiaJia
    Liu, Fang
    Zhang, Kai
    Ma, XiaoHua
    Zhang, JinCheng
    Hao, Yue
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 129 (01)
  • [3] High-performance negative differential resistance characteristics in homoepitaxial AlN/GaN double-barrier resonant tunneling diodes
    Liu, Fang
    Xue, JunShuai
    Li, ZuMao
    Wu, GuanLin
    Yao, JiaJia
    Yuan, JinYuan
    Liu, RenJie
    Zhao, Cheng
    Sun, WenBo
    Zhang, Kai
    Zhang, JinCheng
    Hao, Yue
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (08)
  • [4] Enhanced negative differential resistance in silicene double-barrier resonant tunneling diodes
    Liu, Dan-Na
    Guo, Yong
    Song, Yu
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (10):
  • [5] Enhanced negative differential resistance in silicene double-barrier resonant tunneling diodes
    Dan-Na Liu
    Yong Guo
    Yu Song
    [J]. The European Physical Journal B, 2020, 93
  • [6] Reliable GaN-based Resonant Tunneling Diodes with Reproducible Room-temperature Negative Differential Resistance
    Bayram, C.
    Sadana, D. K.
    Vashaei, Z.
    Razeghi, M.
    [J]. QUANTUM SENSING AND NANOPHOTONIC DEVICES IX, 2012, 8268
  • [7] Demonstration of negative differential resistance in GaN/AlN resonant tunneling diodes at room temperature
    Vashaei, Z.
    Bayram, C.
    Razeghi, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
  • [8] Negative differential resistance in dislocation-free GaN/AlGaN double-barrier diodes grown on bulk GaN
    Golka, S
    Pflügl, C
    Schrenk, W
    Strasser, G
    Skierbiszewski, C
    Siekacz, M
    Grzegory, I
    Porowski, S
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (17)
  • [9] Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes
    Boucherit, M.
    Soltani, A.
    Monroy, E.
    Rousseau, M.
    Deresmes, D.
    Berthe, M.
    Durand, C.
    De Jaeger, J. -C.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (18)
  • [10] Room temperature asymmetric negative differential resistance characteristics of AlGaN/GaN resonant tunneling diodes grown by metal-organic chemical vapor deposition
    Yang, Wen-Lu
    Yang, Lin-An
    Zhang, Xiao-Yu
    Li, Yang
    Ma, Xiao-Hua
    Hao, Yue
    [J]. SOLID-STATE ELECTRONICS, 2022, 187