INTEGRATION OF REMOTE SENSING DERIVED PARAMETERS IN A CROP MODEL: CASE OF HAY

被引:1
|
作者
El Hajj, Mohammad [1 ]
Baghdadi, Nicolas [1 ]
Cheviron, Bruno [2 ]
Belaud, Gilles [3 ]
Zribi, Mehrez [4 ]
机构
[1] IRSTEA, UMR TETIS, 500 Rue Francois Breton, F-34093 Montpellier 5, France
[2] IRSTEA, UMR G EAU, 361 Rue Francois Breton, F-34196 Montpellier 5, France
[3] SupAgro, UMR G EAU, 2 Pl Pierre Viala, F-34060 Montpellier, France
[4] CNRS, CESBIO, 18 Av Edouard Belin,Bpi 2801, F-31401 Toulouse 9, France
关键词
SAR DATA; REGION;
D O I
10.1109/IGARSS.2016.7730865
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this study is to assess the interests of integrating remote-sensing-derived parameters (LAI, harvest and irrigation dates) in a crop model (PILOTE) that simulates vegetation growth for hay crop. Results show that optical images are suitable to feed PILOTE with LAI values without inducing significant errors on the predicted Total Dry Matter (TDM) values (Root Mean Square Error "RMSE" = 0.41 t/ha and Mean Absolute Percentage Error "MAPE" = 22%). Moreover, optical images with revisit times lower than 16 days are adequate to feed PILOTE with remotely sensed harvest dates (RMSE < 0.44 t/ha, MAPE < 10.8%). Finally, results show negligible errors for the TDM predictions when radar images are used to determine all irrigation dates (RMSE = 0.14 t/ha, MAPE = 3.1%). Disregarding one or two irrigations within a period with enough rainfalls does not induce significant errors for the predicted TDM values. However, it causes noticeable underestimations in drier periods (a maximum of 1.55 t/ha for TDM out of 3.43 t/ha predicted using all irrigation dates). This gives an insight about necessary revisit times of radar satellites in order to correctly predict the growth of an irrigated crop.
引用
收藏
页码:7149 / 7152
页数:4
相关论文
共 50 条
  • [1] Integration of remote sensing derived parameters in crop models: Application to the PILOTE model for hay production
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Cheviron, Bruno
    Belaud, Gilles
    Zribi, Mehrez
    [J]. AGRICULTURAL WATER MANAGEMENT, 2016, 176 : 67 - 79
  • [2] Estimation of rice yield based on integration remote sensing information and crop model
    Guo, Jianmao
    Qi, Wang
    Zheng Tengfei
    Li Xujie
    Shi Junyi
    Zhu Jinhui
    [J]. REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY IX, 2012, 8513
  • [3] Spatialisation of a crop model using phenology derived from remote sensing data
    Duchemin, B
    Hadria, R
    Rodriguez, JC
    Lahrouni, A
    Khabba, S
    Boulet, G
    Mougenot, B
    Maisongrande, P
    Watts, C
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2200 - 2202
  • [4] Crop yield estimation model for Iowa using remote sensing and surface parameters
    Prasad, AK
    Chai, L
    Singh, RP
    Kafatos, M
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2006, 8 (01): : 26 - 33
  • [5] Crop growth monitoring by integration of time series remote sensing imagery and the WOFOST model
    Zhao, Hu
    Pei, Zhiyuan
    [J]. 2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2013, : 566 - 569
  • [6] Remote Sensing and Simulation Model for Crop Management
    Soria-Ruiz, J.
    Fernandez-Ordonez, Y.
    Quijano-Carranza, A.
    Macias-Cervantes, J.
    Sauceda, P.
    Gonzalez, D.
    Quintana, J.
    [J]. PIERS 2012 MOSCOW: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2012, : 1134 - 1137
  • [7] Improved crop specific projections from the integration of in situ and remote sensing data in an agrometeorological model
    Hochheim, KP
    Hirose, T
    Bennett, J
    Bullock, PR
    Raddatz, RL
    Fedosejevs, G
    Teillet, PM
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 2391 - 2393
  • [8] Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data
    Han, Congying
    Zhang, Baozhong
    Chen, He
    Liu, Yu
    Wei, Zheng
    [J]. AGRICULTURAL WATER MANAGEMENT, 2020, 240
  • [9] SOYBEAN CROP YIELD PREDICTION BY INTEGRATION OF REMOTE SENSING AND WEATHER OBSERVATIONS
    Mohite, J. D.
    Sawant, S. A.
    Pandit, A.
    Agrawal, R.
    Pappula, S.
    [J]. 39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 197 - 202
  • [10] Spatially distributed crop model based on remote sensing
    Han, Congying
    Zhang, Baozhong
    Chen, He
    Wei, Zheng
    Liu, Yu
    [J]. AGRICULTURAL WATER MANAGEMENT, 2019, 218 : 165 - 173