Deep convolutional correlation iterative particle filter for visual tracking

被引:5
|
作者
Mozhdehi, Reza Jalil [1 ]
Medeiros, Henry [2 ]
机构
[1] Marquette Univ, Dept Elect & Comp Engn, Milwaukee, WI 53233 USA
[2] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
Iterativeparticlefilter; Deepconvolutionalneuralnetwork; Correlationmap; Visualtracking; OBJECT TRACKING; ROBUST; NETWORKS;
D O I
10.1016/j.cviu.2022.103479
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a novel framework for visual tracking based on the integration of an iterative particle filter, a deep convolutional neural network, and a correlation filter. The iterative particle filter enables the particles to correct themselves and converge to the correct target position. We employ a novel strategy to assess the likelihood of the particles after the iterations by applying K-means clustering. Our approach ensures a consistent support for the posterior distribution. Thus, we do not need to perform resampling at every video frame, improving the utilization of prior distribution information. Experimental results on three different benchmark datasets show that our tracker performs favorably against state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] DEEP CONVOLUTIONAL PARTICLE FILTER WITH ADAPTIVE CORRELATION MAPS FOR VISUAL TRACKING
    Mozhdehi, Reza Jalil
    Reznichenko, Yevgeniy
    Siddique, Abubakar
    Medeiros, Henry
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 798 - 802
  • [2] DEEP CONVOLUTIONAL PARTICLE FILTER FOR VISUAL TRACKING
    Mozhdehi, Reza Jalil
    Medeiros, Henry
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3650 - 3654
  • [3] Iterative particle filter for visual tracking
    Fan, Zhenhua
    Ji, Hongbing
    Zhang, Yongquan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 36 : 140 - 153
  • [4] Correlation Particle Filter for Visual Tracking
    Zhang, Tianzhu
    Liu, Si
    Xu, Changsheng
    Liu, Bin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2676 - 2687
  • [5] Deep Convolutional Correlation Filter Learning Toward Robust Visual Object Tracking
    Bouraffa, Tayssir
    Feng, Zihang
    Wang, Yuxuan
    Yan, Liping
    Xia, Yuanqing
    Xiao, Bo
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 4313 - 4320
  • [6] Convolutional Features for Correlation Filter Based Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 621 - 629
  • [7] Kernel particle filter: Iterative sampling for efficient visual tracking
    Chang, C
    Ansari, R
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 977 - 980
  • [8] Convolutional Adaptive Particle Filter with Multiple Models for Visual Tracking
    Mozhdehi, Reza Jalil
    Reznichenko, Yevgeniy
    Siddique, Abubakar
    Medeiros, Henry
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 474 - 486
  • [9] Convolutional Neural Network with Particle Filter Approach for Visual Tracking
    Tyan, Vladimir
    Kim, Doohyun
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (02): : 693 - 709
  • [10] Correlation Gaussian Particle Filter for Robust Visual Tracking
    Zhang, Juan
    Liu, Zhigang
    Lin, Yuehan
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4854 - 4857