Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring

被引:0
|
作者
Kappel, David [1 ]
Habenschuss, Stefan [1 ]
Legenstein, Robert [1 ]
Maass, Wolfgang [1 ]
机构
[1] Graz Univ Technol, Inst Theoret Comp Sci, A-8010 Graz, Austria
关键词
NEURONS; EMERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We reexamine in this article the conceptual and mathematical framework for understanding the organization of plasticity in spiking neural networks. We propose that inherent stochasticity enables synaptic plasticity to carry out probabilistic inference by sampling from a posterior distribution of synaptic parameters. This view provides a viable alternative to existing models that propose convergence of synaptic weights to maximum likelihood parameters. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience. In simulations we show that our model for synaptic plasticity allows spiking neural networks to compensate continuously for unforeseen disturbances. Furthermore it provides a normative mathematical framework to better understand the permanent variability and rewiring observed in brain networks.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Synaptic plasticity, memory and the hippocampus: a neural network approach to causality
    Guilherme Neves
    Sam F. Cooke
    Tim V. P. Bliss
    [J]. Nature Reviews Neuroscience, 2008, 9 : 65 - 75
  • [2] Synaptic plasticity, memory and the hippocampus: a neural network approach to causality
    Neves, Guilherme
    Cooke, Sam F.
    Bliss, Tim V. P.
    [J]. NATURE REVIEWS NEUROSCIENCE, 2008, 9 (01) : 65 - 75
  • [3] Erratum: Synaptic plasticity, memory and the hippocampus: a neural network approach to causality
    Guilherme Neves
    Sam F. Cooke
    Tim V. P. Bliss
    [J]. Nature Reviews Neuroscience, 2012, 13 : 878 - 878
  • [4] Spiking neural network with synaptic plasticity for recognition
    Li, Jing
    Liu, Bo
    Gao, Weixin
    Huang, Xiaoyan
    [J]. PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1728 - 1732
  • [5] Bayesian Approach for Neural Network
    Permai, S. D.
    Ulama, B. S. S.
    Iriawan, N.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (04): : 220 - 226
  • [6] Mimicking Synaptic Plasticity and Neural Network Using Memtranstors
    Shen, Jian-Xin
    Shang, Da-Shan
    Chai, Yi-Sheng
    Wang, Shou-Guo
    Shen, Bao-Gen
    Sun, Young
    [J]. ADVANCED MATERIALS, 2018, 30 (12)
  • [7] Synaptic plasticity as Bayesian inference
    Aitchison, Laurence
    Jegminat, Jannes
    Menendez, Jorge Aurelio
    Pfister, Jean-Pascal
    Pouget, Alexandre
    Latham, Peter E.
    [J]. NATURE NEUROSCIENCE, 2021, 24 (04) : 565 - 571
  • [8] Synaptic plasticity as Bayesian inference
    Laurence Aitchison
    Jannes Jegminat
    Jorge Aurelio Menendez
    Jean-Pascal Pfister
    Alexandre Pouget
    Peter E. Latham
    [J]. Nature Neuroscience, 2021, 24 : 565 - 571
  • [9] STOCHASTIC MODELS OF NEURAL SYNAPTIC PLASTICITY: A SCALING APPROACH
    Robert, Philippe
    Vignoud, Gaetan
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (06) : 2362 - 2386
  • [10] Inverse stochastic resonance in modular neural network with synaptic plasticity
    Yu, Yong-Tao
    Yang, Xiao-Li
    [J]. CHINESE PHYSICS B, 2023, 32 (03)