The electrostatic limit for the 3D Zakharov system

被引:0
|
作者
Antonelli, Paolo [1 ]
Forcella, Luigi [2 ]
机构
[1] Cran Sasso Sci Inst, CSSI, Viale F Crispi 7, I-67100 Laquila, Italy
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
关键词
Zakharov system; Singular limit; Dispersive equations; TIME-OSCILLATING NONLINEARITY; LANGMUIR TURBULENCE; SCHRODINGER-EQUATION; EXISTENCE;
D O I
10.1016/j.na.2017.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the vectorial Zakharov system describing Langmuir waves in a weakly magnetized plasma. In its original derivation (Zakharov, 1972) the evolution for the electric field envelope is governed by a Schrodinger type equation with a singular parameter which is usually large in physical applications. Motivated by this, we study the rigorous limit as this parameter goes to infinity. By using some Strichartz type estimates to control separately the fast and slow dynamics in the problem, we show that the evolution of the electric field envelope is asymptotically constrained onto the space of irrotational vector fields. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 50 条
  • [1] Generalized Strichartz Estimates and Scattering for 3D Zakharov System
    Guo, Zihua
    Lee, Sanghyuk
    Nakanishi, Kenji
    Wang, Chengbo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) : 239 - 259
  • [2] Generalized Strichartz Estimates and Scattering for 3D Zakharov System
    Zihua Guo
    Sanghyuk Lee
    Kenji Nakanishi
    Chengbo Wang
    Communications in Mathematical Physics, 2014, 331 : 239 - 259
  • [3] SCATTERING FOR 3D QUANTUM ZAKHAROV SYSTEM IN L2
    Huang, Chunyan
    Guo, Boling
    Heng, Yi
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (02) : 383 - 404
  • [4] The Asymptotic Limit for the 3D Boussinesq System
    LI Lin-rui
    WANG Ke
    HONG Ming-li
    Chinese Quarterly Journal of Mathematics, 2016, (01) : 51 - 59
  • [5] The Asymptotic Limit for the 3D Boussinesq System
    LI Lin-rui
    WANG Ke
    HONG Ming-li
    数学季刊(英文版), 2016, 31 (01) : 51 - 59
  • [6] The Singular Limit of the Dissipative Zakharov System
    Shcherbina, A. S.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2015, 11 (01) : 75 - 99
  • [7] On the limit behavior of the magnetic Zakharov system
    LiJia Han
    JingJun Zhang
    ZaiHui Gan
    BoLing Guo
    Science China Mathematics, 2012, 55 : 509 - 540
  • [8] On the limit behavior of the magnetic Zakharov system
    HAN LiJia 1
    2 College of Mathematics
    3 College of Mathematics and Software Science
    4 Institute of Applied Physics and Computational Mathematics
    Science China(Mathematics), 2012, 55 (03) : 509 - 540
  • [9] On the limit behavior of the magnetic Zakharov system
    Han LiJia
    Zhang JingJun
    Gan ZaiHui
    Guo BoLing
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (03) : 509 - 540
  • [10] On the global well-posedness and scattering of the 3D Klein–Gordon–Zakharov system
    Xinyu Cheng
    Jiao Xu
    Calculus of Variations and Partial Differential Equations, 2024, 63