Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators

被引:10
|
作者
Heilmann, Margareta [1 ]
Rasa, Ioan [2 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Tech Univ, Dept Math, Str Memorandumului 28, Cluj Napoca 400114, Romania
关键词
Uniquely ergodic operator; Kantorovich modification; Iterates of operators; Dual functionals; LINEAR-OPERATORS; BERNSTEIN;
D O I
10.1007/s11117-016-0441-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Markov operators L on C[0, 1] such that for a certain c is an element of [0, 1), parallel to(Lf)'parallel to <= c parallel to f 'parallel to for all f is an element of C-1 [0, 1]. It is shown that L has a unique invariant probability measure., and then. is used in order to characterize the limit of the iterates L-m of L. When L is a Kantorovich modification of a certain classical operator from approximation theory, the eigenstructure of this operator is used to give a precise description of the limit of Lm. This way we extend some known results; in particular, we extend the domain of convergence of the dual functionals associated with the classical Bernstein operator, which gives a partial answer to a problem raised in 2000 by Cooper and Waldron (JAT 105: 133-165, 2000, Remark after Theorem 4.20).
引用
收藏
页码:897 / 910
页数:14
相关论文
共 50 条
  • [1] Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators
    Margareta Heilmann
    Ioan Raşa
    Positivity, 2017, 21 : 897 - 910
  • [2] Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators II
    Ana-Maria Acu
    Margareta Heilmann
    Ioan Rasa
    Positivity, 2021, 25 : 1585 - 1599
  • [3] Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators II
    Acu, Ana-Maria
    Heilmann, Margareta
    Rasa, Ioan
    POSITIVITY, 2021, 25 (04) : 1585 - 1599
  • [4] C0 -semigroups associated with uniquely ergodic Kantorovich modifications of operators
    Heilmann, Margareta
    Rasa, Ioan
    POSITIVITY, 2018, 22 (03) : 829 - 835
  • [5] GENERALIZED KANTOROVICH MODIFICATIONS OF POSITIVE LINEAR OPERATORS
    Acu, Ana-Maria
    Buscu, Ioan Cristian
    Rasa, Ioan
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (01): : 54 - 62
  • [6] Iterates of multidimensional Kantorovich-type operators and their associated positive C-0-semigroups
    Altomare, Francesco
    Montano, Mirella Cappelletti
    Leonessa, Vita
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 219 - 235
  • [7] On the multiplicative ergodic theorem for uniquely ergodic systems
    Furman, A
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (06): : 797 - 815
  • [8] Iterates of differential operators
    Bouzar, C
    Chaili, R
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 135 - 141
  • [9] A uniquely ergodic cellular automaton
    Torma, Ilkka
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (02) : 415 - 442
  • [10] PREVALENCE OF UNIQUELY ERGODIC SYSTEMS
    JEWETT, RI
    JOURNAL OF MATHEMATICS AND MECHANICS, 1970, 19 (08): : 717 - &