We consider the evolution of certain low-mass binaries, incorporating models of (a) internal evolution, (b) tidal friction, (c) dynamo activity driven by an elementary alpha, Omega dynamo, (d) stellar wind driven by the activity, and (e) magnetic braking as a consequence of wind and poloidal dynamo-generated magnetic field. In some circumstances the stellar wind is found to remove mass on a nuclear timescale, as is necessary to explain some observed systems. We can hope that various uncertainties in the model may be clarified by a careful comparison of the models with such observed quantities as rotation periods. These are modified by processes (a), (b) and (e). Assuming that stellar evolution is slow, rotation rate should in some circumstances represent a balance between magnetic braking trying to slow the star down and tidal friction trying to spin it up. Preliminary attempts are promising, but indicate that some fine tuning is necessary. When there is a third body present, in an orbit which is inclined but not necessarily of short period, the eccentricity of a close binary can be strongly modified by 'Kozai cycles'. We show that this may complicate attempts to account for spin rates of stars in close binaries.