Optimization of the residence time of a Brownian particle in a spherical subdomain

被引:7
|
作者
Benichou, O. [1 ]
Voituriez, R. [1 ]
机构
[1] Univ Paris 06, UMR 7600, Lab Phys Theor Mat Condensee, F-75255 Paris, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 131卷 / 18期
关键词
RANDOM-WALKS; DIFFUSION; SUBDIFFUSION; STATISTICS; MOTIONS; MEDIA;
D O I
10.1063/1.3264122
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this communication, we show that the residence time of a Brownian particle, defined as the cumulative time spent in a given region of space, can be optimized as a function of the diffusion coefficient. We discuss the relevance of this effect to several schematic experimental situations classified in nature-random or deterministic-both of the observation time and of the starting position of the Brownian particle. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3264122]
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Residence time distribution of a Brownian particle
    Berezhkovskii, Alexander M.
    Zaloj, Veaceslav
    Agmon, Noam
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (04):
  • [2] Residence time distribution of a Brownian particle
    Berezhkovskii, AM
    Zaloj, V
    Agmon, N
    PHYSICAL REVIEW E, 1998, 57 (04): : 3937 - 3947
  • [3] Residence times of a Brownian particle with temporal heterogeneity
    Bressloff, Paul C.
    Lawley, Sean D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (19)
  • [4] ORIENTATION AUTOCORRELATION FUNCTIONS OF A SPHERICAL BROWNIAN PARTICLE
    POMEAU, Y
    WEBER, J
    JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (09): : 3616 - 3628
  • [5] BROWNIAN MOTION OF A SPHERICAL-PARTICLE IN A COMPRESSIBLE FLUID
    CHOW, TS
    HERMANS, JJ
    PHYSICA, 1973, 65 (01): : 156 - 162
  • [6] Surface area of the domain visited by a spherical Brownian particle
    Berezhkovskii, Alexander M.
    Bezrukov, Sergey M.
    CHAOS, 2011, 21 (04)
  • [7] Measurements of particle residence time distributions
    Kieviet, F.
    Kerkhof, P.J.A.M.
    Drying Technology, 13 (5-7):
  • [8] Mean joint residence time of two Brownian particles in a sphere
    Bénichou, O
    Coppey, M
    Klafter, J
    Moreau, M
    Oshanin, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (33): : 7205 - 7214
  • [9] Region visited by a spherical Brownian particle in the presence of an absorbing boundary
    Berezhkovskii, Alexander M.
    Larralde, Hernan
    Weiss, George H.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (6 I): : 1 - 062104
  • [10] Region visited by a spherical Brownian particle in the presence of an absorbing boundary
    Berezhkovskii, AM
    Larralde, H
    Weiss, GH
    PHYSICAL REVIEW E, 2001, 64 (06):