A resampling method for regression models with serially correlated errors

被引:7
|
作者
Christoffersson, J [1 ]
机构
[1] SWEDISH UNIV AGR SCI,DEPT FOREST RESOURCE MANAGEMENT & GEOMAT,S-90183 UMEA,SWEDEN
关键词
resampling; regression model; serial correlation; Fourier transform;
D O I
10.1016/S0167-9473(96)00081-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method for using bootstrap in regression models with serially correlated errors to estimate the variance of the parameter vector is proposed. This method uses the real Fourier transform to eliminate the serial correlation of the errors. In the resulting heteroscedastic regression model, resampling of (y(i),x'(i)) pairs is performed. The conditional distribution of the bootstrap replications of the ordinary least-squares (OLS) estimator of the parameter vector is shown asymptotically to be close to the sampling distribution of the OLS estimator. The performance of the method is illustrated via simulation. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 50 条