Solving the equality-constrained minimization problem of polynomial functions

被引:2
|
作者
Xiao, Shuijing [1 ]
Zeng, Guangxing [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Polynomial function; Equality-constrained minimization; Infimum; Attainability; Minimum point; Triangular decomposition; Revised resultant; Transfer principle; GLOBAL OPTIMIZATION; SUMS;
D O I
10.1007/s10898-019-00799-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The purpose of this paper is to solve the equality-constrained minimization problem of polynomial functions. Let R be the field of real numbers, and R[x(1),...,x(n)] the ring of polynomials over R in variables x(1),...,x(n). For an f is an element of R[x(1),...,x(n)] and a finite subset H of R[x(1),...,x(n)], denote by V (f : H) the set {f ((a) over bar) vertical bar (a) over bar is an element of R-n, and h((alpha) over bar) = 0, for all h is an element of H}. In this paper, we provide some effective algorithms for computing the accurate value of the infimum inf V (f : H) of V (f : H), deciding whether or not the constrained infimum inf V (f : H) is attained when inf V (f : H) not equal +/-infinity, and finding a point for the constrained minimum min V (f : H) if inf V (f : H) is attained. With the aid of the computer algebraic system Maple, our algorithms have been compiled into a general program to treat the equality-constrained minimization of polynomial functions with rational coefficients.
引用
收藏
页码:683 / 733
页数:51
相关论文
共 50 条
  • [1] Solving the equality-constrained minimization problem of polynomial functions
    Shuijing Xiao
    Guangxing Zeng
    [J]. Journal of Global Optimization, 2019, 75 : 683 - 733
  • [2] Equality-constrained minimization of polynomial functions
    ShuiJing Xiao
    GuangXing Zeng
    [J]. Science China Mathematics, 2015, 58 : 1 - 24
  • [3] Equality-constrained minimization of polynomial functions
    XIAO ShuiJing
    ZENG GuangXing
    [J]. Science China Mathematics, 2015, 58 (10) : 2181 - 2204
  • [4] Equality-constrained minimization of polynomial functions
    Xiao ShuiJing
    Zeng GuangXing
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (10) : 2181 - 2204
  • [5] Quasi-Newton acceleration for equality-constrained minimization
    Ferreira-Mendonca, L.
    Lopes, V. L. R.
    Martinez, J. M.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 40 (03) : 373 - 388
  • [6] Quasi-Newton acceleration for equality-constrained minimization
    L. Ferreira-Mendonça
    V. L. R. Lopes
    J. M. Martínez
    [J]. Computational Optimization and Applications, 2008, 40 : 373 - 388
  • [7] A matrix nullspace approach for solving equality-constrained multivariable polynomial least-squares problems
    Hoelze, Matthew S.
    Bernstein, Dennis S.
    [J]. AUTOMATICA, 2014, 50 (12) : 3030 - 3037
  • [8] NEWTON METHODS FOR LARGE-SCALE LINEAR EQUALITY-CONSTRAINED MINIMIZATION
    FORSGREN, A
    MURRAY, W
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (02) : 560 - 587
  • [9] A new method of moving asymptotes for large-scale linearly equality-constrained minimization
    Wang, Hai-jun
    Ni, Qin
    Liu, Hao
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (02): : 317 - 328
  • [10] Equality-Constrained Bilinear State Estimation
    Gomez-Quiles, Catalina
    Gil, Hugo A.
    Jaen, Antonio de la Villa
    Gomez-Exposito, Antonio
    [J]. 2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,