Quantum topology change in (2+1)d

被引:7
|
作者
Balachandran, AP [1 ]
Batista, E
Silva, IPCE
Teotonio-Sobrinho, P
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Fed Santa Catarina, Ctr Fis & Matemat, Dep MTM, BR-88010970 Florianopolis, SC, Brazil
[3] Univ Sao Paulo, Inst Fis, DFMA, BR-05315970 Sao Paulo, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1142/S0217751X00000732
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The topology of orientable (2 + 1) space-times can be captured by certain lumps of nontrivial topology called topological geons. They are the topological analogs of con; ventional solitons. We give a description of topological geons where the degrees of free dom related to topology are separated from the complete theory that contain metric (dynamical) degrees of freedom. The formalism also allows us to investigate processes of quantum topology change. They correspond to creation and annihilation of quantum geons. Selection rules for such processes are derived.
引用
收藏
页码:1629 / 1660
页数:32
相关论文
共 50 条
  • [1] TOPOLOGY CHANGE BY QUANTUM TUNNELING IN (2+1)-DIMENSIONAL EINSTEIN GRAVITY
    FUJIWARA, Y
    HIGUCHI, S
    HOSOYA, A
    MISHIMA, T
    SIINO, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (02): : 253 - 268
  • [2] TOPOLOGY CHANGE IN (2+1)-DIMENSIONAL GRAVITY
    CARLIP, S
    COSGROVE, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) : 5477 - 5493
  • [3] TOPOLOGY CHANGES IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY
    FUJIWARA, Y
    HIGUCHI, S
    HOSOYA, A
    MISHIMA, T
    SIINO, M
    [J]. PHYSICAL REVIEW D, 1991, 44 (06): : 1763 - 1768
  • [4] Quantum integrable model on (2+1)-D lattice
    Inoue, R
    Hikami, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (06) : 1843 - 1846
  • [5] Duality between (2+1)d quantum critical points
    Senthil, T.
    Dam Thanh Son
    Wang, Chong
    Xu, Cenke
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 827 : 1 - 48
  • [6] Quantum energies of BPS vortices in D=2+1 and D=3+1
    Graham, N.
    Weigel, H.
    [J]. PHYSICAL REVIEW D, 2022, 106 (07)
  • [7] Topology change in (2+1)-dimensional gravity with non-Abelian Higgs field
    Nesterov, AI
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (09) : 1115 - 1122
  • [8] Topology Change in (2+1)-Dimensional Gravity with Non-Abelian Higgs Field
    Alexander I. Nesterov
    [J]. General Relativity and Gravitation, 1997, 29 : 1115 - 1122
  • [9] Topology and classical geometry in (2+1) gravity
    Franzosi, R
    Guadagnini, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (03) : 433 - 460
  • [10] Scaling of the disorder operator at (2+1)d U(1) quantum criticality
    Wang, Yan-Cheng
    Cheng, Meng
    Meng, Zi Yang
    [J]. PHYSICAL REVIEW B, 2021, 104 (08)