Thermodynamic analysis of ethanol reforming for hydrogen production

被引:59
|
作者
Sun, Shaohui [1 ]
Yan, Wei [1 ]
Sun, Peiqin [1 ]
Chen, Junwu [1 ]
机构
[1] Zhengzhou Univ, Inst Catalysis & Polymer, Sch Chem Engn & Energy, Zhengzhou 450001, Henan, Peoples R China
关键词
Hydrogen; Ethanol; Steam reforming; Partial oxidation; Auto-thermal reforming; Thermodynamic analysis; CATALYTIC PARTIAL OXIDATION; FUEL-CELLS; GLYCEROL; COMPONENTS;
D O I
10.1016/j.energy.2012.04.059
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work presents the simulated equilibrium compositions of ethanol steam reforming (SR), partial oxidation (POX) and auto-thermal reforming (ATR) at a large temperature range, steam-to-ethanol and oxygen-to-ethanol molar ratios. The simulation work shows that the moles of hydrogen yield per mole ethanol are of this order: SR > ATR > POX. The results are compared with other simulation works and fitted models, which show that all the simulation results obtained with different methods agree well with each other. And the fitted models are in highly consistency with very small deviations. Moreover, the thermal-neutral point in corresponding to temperature, steam-to-ethanol and oxygen-to-ethanol mole ratios of ethanol AIR is estimated. The result shows that with the increasing of oxygen-to-ethanol mole ratio, the T-N point moves to higher temperatures; with the increasing of steam-to-ethanol mole ratio, the T-N point moves to lower temperatures. Furthermore, the energy exchanges of the reforming process and the whole process and the thermal efficiencies are also analyzed in the present work and that the energy demands and generated in the whole process are greater than the reforming process can be obtained. Finally, the optimum reaction conditions are selected. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:911 / 924
页数:14
相关论文
共 50 条
  • [1] Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol
    Graschinsky, Cecilia
    Giunta, Pablo
    Amadeo, Norma
    Laborde, Miguel
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (13) : 10118 - 10124
  • [2] Autothermal Reforming of Ethanol for Hydrogen Production: Thermodynamic Analysis
    Srisiriwat, Nawadee
    Wutthithanyawat, Chananchai
    [J]. AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 658 - +
  • [3] Steam reforming of ethanol for hydrogen production: Thermodynamic analysis
    Vasudeva, K
    Mitra, N
    Umasankar, P
    Dhingra, SC
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1996, 21 (01) : 13 - 18
  • [4] Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production
    Rossi, C. C. R. S.
    Alonso, C. G.
    Antunes, O. A. C.
    Guirardello, R.
    Cardozo-Filho, L.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) : 323 - 332
  • [5] HYDROGEN-PRODUCTION BY THE STEAM REFORMING OF ETHANOL - THERMODYNAMIC ANALYSIS
    GARCIA, EY
    LABORDE, MA
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1991, 16 (05) : 307 - 312
  • [6] COMBINED CARBON DIOXIDE REFORMING WITH STEAM REFORMING OF ETHANOL FOR HYDROGEN PRODUCTION: THERMODYNAMIC ANALYSIS
    Wang, Wenju
    Cao, Yingyu
    [J]. INTERNATIONAL JOURNAL OF GREEN ENERGY, 2012, 9 (06) : 503 - 516
  • [7] Thermodynamic analysis of hydrogen production from oxidative steam reforming of ethanol
    Liu, Shuo
    Zhang, Ke
    Fang, Lining
    Li, Yongdan
    [J]. ENERGY & FUELS, 2008, 22 (02) : 1365 - 1370
  • [8] Dry reforming of ethanol for hydrogen production: Thermodynamic investigation
    Wang, Wenju
    Wang, Yaquan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (13) : 5382 - 5389
  • [9] A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions
    Fishtik, I
    Alexander, A
    Datta, R
    Geana, D
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (01) : 31 - 45
  • [10] Thermodynamic analysis of steam reforming of ethanol for hydrogen generation
    Wang, Wenju
    Wang, Y. Q.
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2008, 32 (15) : 1432 - 1443