Forecasting by Machine Learning Techniques and Econometrics: A Review

被引:18
|
作者
Shobana, G. [1 ]
Umamaheswari, K. [2 ]
机构
[1] Madras Christian Coll, Dept Comp Applicat, Chennai, Tamil Nadu, India
[2] Bharathi Womens Coll, Dept Comp Sci, Chennai, Tamil Nadu, India
关键词
Econometrics; Economic Data; Machine Learning; Supervised; Unsupervised;
D O I
10.1109/ICICT50816.2021.9358514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Econometricians deal with a tremendous amount of data to derive the relationships between economic entities. When statistical techniques are applied to the economic data to determine the relative economic entities with verifiable observations, this quantitative analysis is termed Econometrics. Traditional Econometric methods employ pure statistical and mathematical concepts to analyze economic data. Applied Econometrics deals with exploring real-world observations like forecasting, fluctuating market prices, economic outcomes or results, etc. In recent years, Machine Learning models are applied to quantitative data available in almost all domains. Machine Learning Models perform very efficiently in the classification process and it is used in the field of economics to classify the economic data more accurately than traditional econometric models. In this paper, several machine learning methods that are specifically used for economic data are explored. This paper further investigates the various Supervised machine learning techniques that contribute effectively along with metrics that are involved in the analysis procedure of econometric models. This study provides deep insight into those machine learning models preferred by the Econometricians and their future implications.
引用
收藏
页码:1010 / 1016
页数:7
相关论文
共 50 条
  • [1] Forecasting implied volatilities of currency options with machine learning techniques and econometrics models
    Olsen, Asbjorn
    Djupskas, Gard
    de Lange, Petter Eilif
    Risstad, Morten
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [2] A review of deep learning and machine learning techniques for hydrological inflow forecasting
    Latif, Sarmad Dashti
    Ahmed, Ali Najah
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023, 25 (11) : 12189 - 12216
  • [3] A review of deep learning and machine learning techniques for hydrological inflow forecasting
    Sarmad Dashti Latif
    Ali Najah Ahmed
    Environment, Development and Sustainability, 2023, 25 : 12189 - 12216
  • [4] Forecasting with Machine Learning Techniques
    Hussain, Walayat
    Alkalbani, Asma Musabah
    Gao, Honghao
    FORECASTING, 2021, 3 (04): : 868 - 869
  • [5] Air Temperature Forecasting Using Machine Learning Techniques: A Review
    Cifuentes, Jenny
    Marulanda, Geovanny
    Bello, Antonio
    Reneses, Javier
    ENERGIES, 2020, 13 (16)
  • [6] Machine Learning Techniques for Renewable Energy Forecasting: A Comprehensive Review
    Gaamouche, Rajae
    Chinnici, Marta
    Lahby, Mohamed
    Abakarim, Youness
    Hasnaoui, Abdennebi El
    Green Energy and Technology, 2022, : 3 - 39
  • [7] Machine learning techniques for flood forecasting
    Hadi, Fayrouz Abd Alkareem
    Sidek, Lariyah Mohd
    Salih, Gasim Hayder Ahmed
    Basri, Hidayah
    Sammen, Saad Sh.
    Dom, Norlida Mohd
    Ali, Zaharifudin Muhamad
    Ahmed, Ali Najah
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (04) : 779 - 799
  • [8] A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern
    Sri Preethaa, K. R.
    Muthuramalingam, Akila
    Natarajan, Yuvaraj
    Wadhwa, Gitanjali
    Ali, Ahmed Abdi Yusuf
    SUSTAINABILITY, 2023, 15 (17)
  • [9] Review on Fashion Trend Analysis and Forecasting Techniques - A Machine Learning Approach
    Jiju, Amrita
    Anilkumar, Adithya
    Krishnan, Gokul K. P.
    George, Jithu
    Prasanth, R. S.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [10] Machine learning techniques and data for stock market forecasting: A literature review
    Kumbure, Mahinda Mailagaha
    Lohrmann, Christoph
    Luukka, Pasi
    Porras, Jari
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 197