On the theory of two-dimensional surfaces in Euclidean space

被引:0
|
作者
Ganchiev, G [1 ]
Milousheva, V [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
关键词
conformal parameters; torse-forming vector field; geometric normals;
D O I
10.1142/9789812704191_0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the conformal representation of a two-dimensional surface in n-dimensional Euclidean space, we obtain conditions under which the normal connection of the surface is flat. We introduce the notion of geometric normal vector field and prove that the normal connection of a two-dimensional surface is flat iff the surface admits geometric normal frame fields. We find the relation between two geometric normal frame fields.
引用
下载
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [1] On the theory of surfaces in the four-dimensional Euclidean space
    Ganchev, Georgi
    Milousheva, Velichka
    KODAI MATHEMATICAL JOURNAL, 2008, 31 (02) : 183 - 198
  • [2] Superintegrability on two-dimensional complex Euclidean space
    Kalnins, EG
    Miller, W
    Pogosyan, GS
    ALGEBRAIC METHODS IN PHYSICS: SYMPOSIUM FOR THE 60TH BIRTHDAYS OF JIRI PATERA AND PAVEL WINTERNITZ, 2001, : 95 - 103
  • [3] Applications of the theory of the metaplectic representation to quadratic Hamiltonians on the two-dimensional Euclidean space
    Matsumoto, H
    Ueki, N
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (02) : 269 - 292
  • [4] INVARIANTS OF A MAPPING OF A SET TO THE TWO-DIMENSIONAL EUCLIDEAN SPACE
    Khadjiev, Djavvat
    Beshimov, Gayrat
    Oeren, Idris
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2023, 72 (01): : 137 - 158
  • [5] Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space
    Djavvat Khadjiev
    Yavuz Gőksal
    Advances in Applied Clifford Algebras, 2016, 26 : 645 - 668
  • [6] Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space
    Khadjiev, Djavvat
    Goksal, Yavuz
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 645 - 668
  • [7] TWO-DIMENSIONAL MEASURE IN 3-DIMENSIONAL EUCLIDEAN-SPACE
    TORALBALLA, LV
    MATHEMATISCHE NACHRICHTEN, 1985, 120 : 295 - 302
  • [8] Two-dimensional electron gas in a non-Euclidean space
    Costa Filho, Raimundo N.
    Oliveira, S. F. S.
    Aguiar, V
    da Costa, D. R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 129
  • [9] CHARACTERIZING A SPACE WHICH IS EUCLIDEAN NEAR A TWO-DIMENSIONAL SUBSPACE
    CALVERT, BD
    HOUSTON JOURNAL OF MATHEMATICS, 1987, 13 (03): : 319 - 335
  • [10] An exact equation for Wilson loops in two-dimensional Euclidean space
    Azam, M
    MODERN PHYSICS LETTERS A, 2003, 18 (27) : 1925 - 1929