Interpreting spatial regression models with multiplicative interaction explanatory variables

被引:4
|
作者
Sheng, Yuxue [1 ]
LeSage, James Paul [2 ]
机构
[1] Guangxi Univ, Business Sch, 100 Daxue Rd, Nanning 530004, Peoples R China
[2] Univ Toledo, 2801 W Bancroft St, Toledo, OH 43606 USA
基金
中国国家自然科学基金;
关键词
Spatial spillovers; Marginal effects; Spatial regression models; Multiplicative interaction variables; C11; C23; O47; O52; CROSS-SECTIONAL DEPENDENCE; ABSORPTIVE-CAPACITY;
D O I
10.1007/s10109-021-00356-4
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Use of multiplicative interaction of explanatory variables has been a standard practice in the regression modeling literature, and estimation of the parameters of such a model in the case of spatial autoregressive (SAR) or spatial Durbin (SDM) models can be accomplished using existing software for spatial regression estimation. However, use of the conventional scalar summary estimates of direct and indirect effects reflecting the own- and other-region impacts on the dependent variable associated with changes in the explanatory variables will not produce valid inferences. We discuss the issues that arise and introduce new methods for interpretation of own- and other-region impacts based on estimates from this type of model.
引用
收藏
页码:333 / 360
页数:28
相关论文
共 50 条
  • [1] Interpreting spatial regression models with multiplicative interaction explanatory variables
    Yuxue Sheng
    James Paul LeSage
    [J]. Journal of Geographical Systems, 2021, 23 : 333 - 360
  • [2] Interval regression models with endogenous explanatory variables
    Bettin, Giulia
    Lucchetti, Riccardo
    [J]. EMPIRICAL ECONOMICS, 2012, 43 (02) : 475 - 498
  • [3] Regression models with parametrically weighted explanatory variables
    Yamaguchi, K
    [J]. SOCIOLOGICAL METHODOLOGY 2002, VOL 32, 2002, 32 : 219 - 245
  • [4] Interval regression models with endogenous explanatory variables
    Giulia Bettin
    Riccardo Lucchetti
    [J]. Empirical Economics, 2012, 43 : 475 - 498
  • [5] Spatial models with explanatory variables in the dependence structure
    Ingebrigtsen, Rikke
    Lindgren, Finn
    Steinsland, Ingelin
    [J]. SPATIAL STATISTICS, 2014, 8 : 20 - 38
  • [6] Interpretation of Explanatory Variables Impacts in Compositional Regression Models
    Morais, Joanna
    Thomas-Agnan, Christine
    Simioni, Michel
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2018, 47 (05) : 1 - 25
  • [7] Local influence of explanatory variables in Gaussian spatial linear models
    Borssoi, Joelmir A.
    De Bastiani, Fernanda
    Uribe-Opazo, Miguel A.
    Galea, Manuel
    [J]. CHILEAN JOURNAL OF STATISTICS, 2011, 2 (02): : 29 - 38
  • [8] Median regression for SUR models with the same explanatory variables in each equation
    Shukur, Ghazi
    Zeebari, Zangin
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (08) : 1765 - 1779
  • [9] A new method for dealing with measurement error in explanatory variables of regression models
    Freedman, LS
    Fainberg, V
    Kipnis, V
    Midthune, D
    Carroll, RJ
    [J]. BIOMETRICS, 2004, 60 (01) : 172 - 181
  • [10] THE GRAPHICAL EVALUATION OF EXPLANATORY VARIABLES IN PROPORTIONAL HAZARD REGRESSION-MODELS
    LAGAKOS, SW
    [J]. BIOMETRIKA, 1981, 68 (01) : 93 - 98