Hyperspectral Anomaly Detection via Integration of Feature Extraction and Background Purification

被引:0
|
作者
Ma, Yong [1 ,2 ]
Fan, Ganghui [1 ]
Jin, Qiwen [1 ]
Huang, Jun [1 ,2 ]
Mei, Xiaoguang [1 ,2 ]
Ma, Jiayi [1 ,2 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Inst Aerosp Sci & Technol, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Hyperspectral imaging; Sparse matrices; Covariance matrices; Detectors; Anomaly detection; hyperspectral anomaly detection (AD); low rank and sparse matrix decomposition (LRaSMD); row-sparsity; RX-ALGORITHM;
D O I
10.1109/LGRS.2020.2998809
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Anomaly detection (AD) has become a hotspot in hyperspectral imagery (HSI) processing due to its advantage in detecting potential targets without prior knowledge, and a variety of algorithms are proposed for a better performance. However, they usually either fail to extract intrinsic features underlying HSIs, or suffer from the contamination of noise and anomalies. To address these problems, we propose a new anomaly detector by integrating fractional Fourier transform (FrFT) with low rank and sparse matrix decomposition (LRaSMD). First, distinctive features of HSI data are extracted via FrFT. Then, row-constrained LRaSMD (RC-LRaSMD), which is more practical and stable than the traditional LRaSMD, is employed to separate background from noise and anomalies. Finally, we implement an atom-selection strategy to construct the background covariance matrix for detection. The experimental results with several HSI data sets demonstrate satisfying detection performance compared with other state-of-the-art detectors.
引用
收藏
页码:1436 / 1440
页数:5
相关论文
共 50 条
  • [1] Hyperspectral Anomaly Detection via Integration of Feature Extraction and Background Purification
    Ma, Yong
    Fan, Ganghui
    Jin, Qiwen
    Huang, Jun
    Mei, Xiaoguang
    Ma, Jiayi
    [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (08): : 1436 - 1440
  • [2] Hyperspectral Anomaly Detection Based on Background Purification and Spectral Feature Extraction
    Zhao, Minghua
    Zheng, Wen
    Hu, Jing
    [J]. INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING, ICOPEN 2023, 2024, 13069
  • [3] Hyperspectral Anomaly Detection via Spatial Density Background Purification
    Tu, Bing
    Li, Nanying
    Liao, Zhuolang
    Ou, Xianfeng
    Zhang, Guoyun
    [J]. REMOTE SENSING, 2019, 11 (22)
  • [4] Hyperspectral Anomaly Detection via Background Purification and Spatial Difference Enhancement
    Wang, Xiaoyi
    Wang, Liguo
    Wang, Jiawen
    Sun, Kaipeng
    Wang, Qunming
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Integration of an autoencoder and background suppression for hyperspectral anomaly detection
    Hu, Xing
    Chen, Tingting
    Zhang, Dawei
    [J]. REMOTE SENSING LETTERS, 2024, 15 (09) : 977 - 987
  • [6] Hyperspectral Anomaly Detection via Background and Potential Anomaly Dictionaries Construction
    Ning Huyan
    Zhang, Xiangrong
    Zhou, Huiyu
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2263 - 2276
  • [7] Hyperspectral anomaly detection combining sparse constraint and feature extraction via stacked autoencoder
    Song, Shangzhen
    Yang, Yixirf
    Wang, Huifeng
    Wang, Xiaoyan
    Rong, Shenghui
    Zhou, Huixin
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (06): : 932 - 943
  • [8] HYPERSPECTRAL ANOMALY DETECTION BASED ON BACKGROUND PURIFICATION VIA DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL
    Wang, Zhiyue
    Zhang, Junping
    Zhang, Ye
    Zhou, Xinyu
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7423 - 7426
  • [9] Hyperspectral Anomaly Detection Method Based on Adaptive Background Extraction
    Li, Min
    Li, Puhuang
    Xu, Haiyan
    [J]. IEEE ACCESS, 2020, 8 : 35446 - 35454
  • [10] Kernel ICA Feature Extraction for Anomaly Detection in Hyperspectral Imagery
    Zhao Chunhui
    Wang Yulei
    Mei Feng
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (02) : 265 - 269