Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria

被引:217
|
作者
Hui, Sheng [1 ]
Silverman, Josh M. [2 ,3 ]
Chen, Stephen S. [2 ,3 ]
Erickson, David W. [1 ]
Basan, Markus [1 ]
Wang, Jilong [1 ]
Hwa, Terence [1 ,4 ]
Williamson, James R. [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Scripps Res Inst, Dept Integrat Struct & Computat Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Chem, La Jolla, CA 92037 USA
[4] Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
growth physiology; metabolic network; microbiology; quantitative proteomics; systems biology; ESCHERICHIA-COLI; MASS-SPECTROMETRY; ABSOLUTE QUANTIFICATION; PROTEIN-SYNTHESIS; GROWTH-RATE; GENE-EXPRESSION; BALANCED GROWTH; IN-VIVO; E; COIL; ABUNDANCE;
D O I
10.15252/msb.20145697
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate. The growth rate-dependent components of the proteome fractions comprise about half of the proteome by mass, and their mutual dependencies can be characterized by a simple flux model involving only two effective parameters. The success and apparent generality of this model arises from tight coordination between proteome partition and metabolism, suggesting a principle for resource allocation in proteome economy of the cell. This strategy of global gene regulation should serve as a basis for future studies on gene expression and constructing synthetic biological circuits. Coarse graining may be an effective approach to derive predictive phenomenological models for other 'omics' studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantitative prediction of genome-wide resource allocation in bacteria
    Goelzer, Anne
    Muntel, Jan
    Chubukov, Victor
    Jules, Matthieu
    Prestel, Eric
    Noelker, Rolf
    Mariadassou, Mahendra
    Aymerich, Stephane
    Hecker, Michael
    Noirot, Philippe
    Becher, Doerte
    Fromion, Vincent
    [J]. METABOLIC ENGINEERING, 2015, 32 : 232 - 243
  • [2] A Chemical Proteomic Strategy Reveals Inhibitors of Lipoate Salvage in Bacteria and Parasites
    Dienemann, Jan-Niklas
    Chen, Shu-Yu
    Hitzenberger, Manuel
    Sievert, Montana L.
    Hacker, Stephan M.
    Prigge, Sean T.
    Zacharias, Martin
    Groll, Michael
    Sieber, Stephan A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (31)
  • [3] Global quantitative proteomic analysis of aged mouse hippocampus
    Huang, He
    van Waardenberg, Ashley J.
    Graham, Mark E.
    Anggono, Victor
    Widagdo, Jocelyn
    [J]. PROTEOMICS, 2024, 24 (07)
  • [4] A Proteomic Strategy for Global Analysis of Plant Protein Complexes
    Aryal, Uma K.
    Xiong, Yi
    McBride, Zachary
    Kihara, Daisuke
    Xie, Jun
    Hall, Mark C.
    Szymanski, Daniel B.
    [J]. PLANT CELL, 2014, 26 (10): : 3867 - 3882
  • [5] Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast
    Dephoure, Noah
    Hwang, Sunyoung
    O'Sullivan, Ciara
    Dodgson, Stacie E.
    Gygi, Steven P.
    Amon, Angelika
    Torres, Eduardo M.
    [J]. ELIFE, 2014, 3 : 1 - 27
  • [6] TMT-Based Quantitative Proteomic Analysis Reveals Proteomic Changes Involved in Longevity
    Wang, Zongkui
    Zhang, Rong
    Liu, Fengjuan
    Jiang, Peng
    Xu, Jun
    Cao, Haijun
    Du, Xi
    Ma, Li
    Lin, Fangzhao
    Cheng, Lu
    Zhou, Xuefeng
    Shi, Zhihui
    Liu, Yeheng
    Huang, Yaojing
    Ye, Shengliang
    Li, Changqing
    [J]. PROTEOMICS CLINICAL APPLICATIONS, 2019, 13 (04)
  • [7] Resource allocation in transboundary tuna fisheries: A global analysis
    Katherine Seto
    Grantly R. Galland
    Alice McDonald
    Angela Abolhassani
    Kamal Azmi
    Hussain Sinan
    Trent Timmiss
    Megan Bailey
    Quentin Hanich
    [J]. Ambio, 2021, 50 : 242 - 259
  • [8] Resource allocation in transboundary tuna fisheries: A global analysis
    Seto, Katherine
    Galland, Grantly R.
    McDonald, Alice
    Abolhassani, Angela
    Azmi, Kamal
    Sinan, Hussain
    Timmiss, Trent
    Bailey, Megan
    Hanich, Quentin
    [J]. AMBIO, 2021, 50 (01) : 242 - 259
  • [9] Differential proteomic analysis of HeLa cells treated with Honokiol using a quantitative proteomic strategy
    B. Ling
    S.-F. Liang
    Y.-H. Xu
    X.-Y. Zhao
    M.-H. Tang
    X.-Y. Liu
    X. Zhao
    C.-H. Huang
    L.-J. Chen
    Y.-Q. Wei
    [J]. Amino Acids, 2008, 35 : 115 - 122
  • [10] Differential proteomic analysis of HeLa cells treated with Honokiol using a quantitative proteomic strategy
    Ling, B.
    Liang, S. -F.
    Xu, Y. -H.
    Zhao, X. -Y.
    Tang, M. -H.
    Liu, X. -Y.
    Zhao, X.
    Huang, C. -H.
    Chen, L. -J.
    Wei, Y. -Q.
    [J]. AMINO ACIDS, 2008, 35 (01) : 115 - 122