The Finite Patch Method: a nodal equation method based on FEM

被引:1
|
作者
Mohr, GA [1 ]
机构
[1] Int Inst Arts & Sci Coll, Dept Math, St Kilda, Vic 3182, Australia
关键词
finite difference method; finite element method; patch matrix; patch method; plane stress; potential problems; rectangular basis; triangular basis;
D O I
10.1016/S0965-9978(00)00090-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The recently developed (Finite) Patch Method is introduced. In these equations for a patch of finite elements are rearranged to obtain a patch matrix E. This provides equations for corner, edge and interior nodes of a domain, which are then solved by relaxation. The method is similar to the classical FDM except that FEM is used to form equations and thus equations for boundary nodes are automatically included. The method is applied to potential and plane stress problems and problems including line elements and irregular boundaries. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [1] A SYMMETRIC NODAL CONSERVATIVE FINITE ELEMENT METHOD FOR THE DARCY EQUATION
    Barrenechea, Gabriel R.
    Franca, Leopoldo P.
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3652 - 3677
  • [2] HYBRID NODAL INTEGRAL/FINITE ELEMENT METHOD (NI-FEM) FOR TIME-DEPENDENT CONVECTION DIFFUSION EQUATION
    Namala, Sundar
    Rizwan-uddin
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE2020), VOL 1, 2020,
  • [3] A nodal discontinuous Galerkin finite element method for the poroelastic wave equation
    Khemraj Shukla
    Jan S. Hesthaven
    José M. Carcione
    Ruichao Ye
    Josep de la Puente
    Priyank Jaiswal
    Computational Geosciences, 2019, 23 : 595 - 615
  • [4] A nodal discontinuous Galerkin finite element method for the poroelastic wave equation
    Shukla, Khemraj
    Hesthaven, Jan S.
    Carcione, Jose M.
    Ye, Ruichao
    de la Puente, Josep
    Jaiswal, Priyank
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (03) : 595 - 615
  • [5] Application of the Nodal Integrated Finite Element Method to Cutting: a Preliminary Comparison with the "Traditional" FEM Approach
    Greco, F.
    Umbrello, D.
    Di Renzo, S.
    Filice, L.
    Alfaro, I.
    Cueto, E.
    MODELLING OF MACHINING OPERATIONS, 2011, 223 : 172 - +
  • [6] Domain decomposition method and nodal finite element for solving Helmholtz equation.
    Bendali, A
    Boubendir, Y
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (03) : 229 - 234
  • [7] The finite-element method (FEM)
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 116: NUMERICAL FIELD CALCULATION FOR CHARGED PARTICLE OPTICS, 2001, 116 : 193 - 261
  • [8] A HENNART NODAL METHOD FOR THE DIFFUSION EQUATION
    LESAINT, P
    NOCEIR, S
    VERWAERDE, D
    NUCLEAR SCIENCE AND ENGINEERING, 1995, 119 (02) : 139 - 143
  • [9] EFFICIENT NODAL EQUATION ASSEMBLY METHOD
    GROUT, JS
    PROCEEDINGS OF THE IEEE, 1969, 57 (07) : 1322 - &
  • [10] Comparison of the nodal integral method and nonstandard finite-difference schemes for the Fisher equation
    Uddin, R
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 22 (06): : 1926 - 1942