Covariant (hh′)-deformed bosonic and fermionic algebras as contraction limits of q-deformed ones

被引:1
|
作者
Quesne, C [1 ]
机构
[1] Free Univ Brussels, B-1050 Brussels, Belgium
关键词
D O I
10.1023/A:1026685115088
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
GL(h)(n) X GL(h')(m)-covariant (hh')-bosonic [or (hh')-fermionic] algebras A(hh'+/-)(n, m) are built in terms of the corresponding R-h and R-h'-matrices by contracting the GL(q)(n) X GL(q+/-1)(m)-covariant q-bosonic (or q-fermionic) algebras A(q+/-)((alpha))(n, m), alpha = 1, 2. When using a basis of A(q+/-)((alpha))(n, m) wherein the annihilation operators are contragredient to the creation ones, this contraction procedure can be carried out for any n, m values. When employing instead a basis wherein the annihilation operators, like the creation ones, are irreducible tensor operators with respect to the dual quantum algebra U-q(gl(n)) X Uq+/-1(gl(m)), a contraction limit only exists for n, m is an element of {1, 2, 4, 6, ...}. For n = 2, m = 1, and n = m = 2, the resulting relations can be expressed in terms of coupled (anti)commutators las in the classical case), by using U-h(sl(2)) [instead of sl(2)] Clebsch-Gordan coefficients. Some U-h(sl(2)) rank-1/2 irreducible tensor operators recently constructed by Aizawa are shown to provide a realization of A(h+/-)(2, 1).
引用
收藏
页码:1905 / 1923
页数:19
相关论文
共 50 条
  • [1] Covariant (hh′)-Deformed Bosonic and Fermionic Algebras as Contraction Limits of q-Deformed Ones
    C. Quesne
    [J]. International Journal of Theoretical Physics, 1999, 38 : 1905 - 1923
  • [2] q-Deformed oscillator algebra in fermionic and bosonic limits
    Sargolzaeipor, S.
    Hassanabadi, H.
    Chung, W. S.
    Ikot, A. N.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 93 (05):
  • [3] q-Deformed oscillator algebra in fermionic and bosonic limits
    S Sargolzaeipor
    H Hassanabadi
    W S Chung
    A N Ikot
    [J]. Pramana, 2019, 93
  • [4] Embedding q-deformed Heisenberg algebras into undeformed ones
    Fiore, G
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 1999, 43 (1-2) : 101 - 108
  • [5] THE SOLUTIONS OF THE Q-DEFORMED FERMIONIC OSCILLATOR
    WANG, AM
    JING, SC
    RUAN, TN
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (09): : 1433 - 1439
  • [6] COMMENT ON THE Q-DEFORMED FERMIONIC OSCILLATOR
    JING, S
    XU, JJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16): : L891 - L894
  • [7] q-deformed Heisenberg algebras
    Wess, J
    [J]. GEOMETRY AND QUANTUM PHYSICS, 2000, 543 : 311 - 382
  • [8] Some comments on q-deformed oscillators and q-deformed su(2) algebras
    Kwek, LC
    Oh, CH
    [J]. EUROPEAN PHYSICAL JOURNAL C, 1998, 5 (01): : 189 - 193
  • [9] Some comments on q-deformed oscillators and q-deformed su(2) algebras
    Kwek L.C.
    Oh C.H.
    [J]. The European Physical Journal C - Particles and Fields, 1998, 5 (1): : 189 - 193
  • [10] The characteristic equation of q-deformed bosonic oscillator
    Wu, N
    Ruan, TN
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (03) : 369 - 372