Multi-class Motor Imagery Classification by Singular Value Decomposition and Deep Boltzmann Machine

被引:0
|
作者
Yu, Zhongliang [1 ]
Song, Jinchun [1 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain computer interface; Motor imagery; Deep boltzmann machine; Multi-class; Classification; EEG; PATTERNS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motor function rehabilitation is very urgent for patients. Motor imagery is an efficient way for rehabilitation. To achieve the supervision of multiple rehabilitation targets simultaneously, the promotion of multi-class motor imagery classification accuracy is critical. In this paper, a multi-class classification method is proposed by utilizing singular value decomposition and deep boltzmann machine. Singular value decomposition is applied to suppress the artifacts and acquire the channel-individual characteristics. The deep boltzmann machine is employed to extract and model the characteristics and achieve the motor imagery classification. Results demonstrate that the proposed method has achieved a 14.2% higher classification accuracy than the common spatial pattern on average. This results are further validated by the statistical methods, which present a significant difference (p < 0.05). The proposed method is favorable for promoting the multi-class motor imagery classification efficiency.
引用
收藏
页码:376 / 379
页数:4
相关论文
共 50 条
  • [1] Multi-class Classification of Motor Imagery EEG Signals Using Deep Learning Models
    Khemakhem R.
    Belgacem S.
    Echtioui A.
    Ghorbel M.
    Ben Hamida A.
    Kammoun I.
    SN Computer Science, 5 (5)
  • [2] High Performance Multi-class Motor Imagery EEG Classification
    Khan, Gul Hameed
    Hashmi, M. Asim
    Awais, Mian M.
    Khan, Nadeem A.
    Basir, Rushda
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 4: BIOSIGNALS, 2020, : 149 - 155
  • [3] A Deep Convolutional Neural Network Based Classification of Multi-Class Motor Imagery with Improved Generalization
    Kar, Aupendu
    Bera, Sutanu
    Karri, S. P. K.
    Ghosh, Sudipta
    Mahadevappa, Manjunatha
    Sheet, Debdoot
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5085 - 5088
  • [4] Multi-class Motor Imagery Classification using Multi-class SVM with Multi-band Riemannian Tangent Space Mapping
    Shin, Jinhyo
    Chung, Wonzoo
    2023 11TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE, BCI, 2023,
  • [5] Multi-class Motor Imagery EEG Classification using Convolution Neural Network
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2021, : 591 - 595
  • [6] Improving Multi-Class Motor Imagery EEG Classification Using Overlapping Sliding Window and Deep Learning Model
    Hwang, Jeonghee
    Park, Soyoung
    Chi, Jeonghee
    ELECTRONICS, 2023, 12 (05)
  • [7] EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine
    Gao, Lin
    Cheng, Wei
    Zhang, Jinhua
    Wang, Jue
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (08):
  • [8] A novel method for classification of multi-class motor imagery tasks based on feature fusion
    Hou, Yimin
    Chen, Tao
    Lun, Xiangmin
    Wang, Fang
    NEUROSCIENCE RESEARCH, 2022, 176 : 40 - 48
  • [9] Performance Analysis of Ensemble Methods for Multi-class Classification of Motor Imagery EEG Signal
    Bhattacharyya, Saugat
    Konar, Amit
    Tibarewala, D. N.
    Khasnobish, Anwesha
    Janarthanan, R.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, ENERGY & COMMUNICATION (CIEC), 2014, : 712 - 716
  • [10] Fusion Convolutional Neural Network for Multi-Class Motor Imagery of EEG Signals Classification
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1642 - 1647