The existence of positive solutions to a non-local singular boundary value problem

被引:2
|
作者
O'Regan, D
Stanek, S
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal, Olomouc 77900, Czech Republic
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
non-local singular boundary value problem; positive solution; regularization; non-linear alternative of Leray-Schauder type;
D O I
10.1002/mma.676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the non-local singular boundary value problem [GRAPHICS] where q epsilon C-0( 0,1]) and f, h epsilon C-0((0, infinity)), lim(x -> 0+) f (x) = - infinity, lim(x -> 0+) h(x) = infinity. We present conditions guaranteeing the existence of a solution x epsilon C-1([0, 1]) boolean AND C-2((0, 1]) which is positive on (0, 1]. The proof of the existence result is based on regularization and sequential techniques and on a non-linear alternative of Leray-Schauder type. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条