On Regular Vertices of the Union of Planar Convex Objects

被引:3
|
作者
Ezra, Esther [1 ]
Pach, Janos [2 ,3 ,4 ]
Sharir, Micha [1 ,3 ]
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] CUNY, City Coll, Dept Comp Sci, New York, NY 10031 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[4] Renyi Inst, H-1364 Budapest, Hungary
基金
美国国家科学基金会;
关键词
Geometric arrangements; Union of planar regions; Regular vertices; Lower envelopes; Bi-clique decompositions; (1/r)-cuttings; JORDAN REGIONS; ARRANGEMENTS;
D O I
10.1007/s00454-008-9118-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let C be a collection of n compact convex sets in the plane such that the boundaries of any pair of sets in C intersect in at most s points for some constant s >= 4. We show that the maximum number of regular vertices (intersection points of two boundaries that intersect twice) on the boundary of the union U of C is O*(n(4/3)), which improves earlier bounds due to Aronov et al. (Discrete Comput. Geom. 25, 203-220, 2001). The bound is nearly tight in the worst case. In this paper, a bound of the form O*(f(n)) means that the actual bound is C(epsilon)f (n) . n(epsilon) for any epsilon > 0, where C(epsilon) is a constant that depends on epsilon (and generally tends to infinity as epsilon decreases to 0).
引用
收藏
页码:216 / 231
页数:16
相关论文
共 50 条
  • [1] On Regular Vertices of the Union of Planar Convex Objects
    Esther Ezra
    János Pach
    Micha Sharir
    Discrete & Computational Geometry, 2009, 41
  • [2] On the number of regular vertices of the union of Jordan regions
    Aronov, B
    Efrat, A
    Halperin, D
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (02) : 203 - 220
  • [3] On the number of regular vertices of the union of jordan regions
    B. Aronov
    A. Efrat
    D. Halperin
    M. Sharir
    Discrete & Computational Geometry, 2001, 25 : 203 - 220
  • [4] On the number of regular vertices of the union of Jordan regions
    Aronov, B
    Efrat, A
    Halperin, D
    Sharir, M
    ALGORITHM THEORY - SWAT'98, 1998, 1432 : 322 - 334
  • [5] The Voronoi diagram of planar convex objects
    Karavelas, MI
    Yvinec, M
    ALGORITHMS - ESA 2003, PROCEEDINGS, 2003, 2832 : 337 - 348
  • [6] On the boundary of the union of planar convex sets
    Pach, J
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (03) : 321 - 328
  • [7] On the Boundary of the Union of Planar Convex Sets
    J. Pach
    M. Sharir
    Discrete & Computational Geometry, 1999, 21 : 321 - 328
  • [8] On the planar, outer planar, cut vertices and end-regular comaximal graph of lattices
    Afkhami, Mojgan
    Khashyarmanesh, Kazem
    Shahsavar, Faeze
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 295 - 312
  • [9] On the complexity of the union of fat convex objects in the plane
    Efrat, A
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (02) : 171 - 189
  • [10] On the Complexity of the Union of Fat Convex Objects in the Plane
    A. Efrat
    M. Sharir
    Discrete & Computational Geometry, 2000, 23 : 171 - 189