RF Power Amplifier Modeling and Linearization with Augmented RBF Neural Networks

被引:0
|
作者
Liu, Taijun [1 ]
Hui, Ming [2 ]
Zhang, Yongbo [3 ]
Yang, Dongxu [3 ]
Ye, Yan [1 ]
Zhang, Meng [2 ]
Lin, Wentao [1 ]
Jiang, Mingyu [1 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
[2] Nanyang Normal Univ, Coll Phys & Elect Engn, Nanyang 473061, Henan, Peoples R China
[3] Zhejiang Tourism Coll, Hangzhou 311231, Zhejiang, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present an augmented radial basis function (RBF) neural network (ARBFNN) to linearize a wideband Doherty RF power amplifier with strong memory effects., A 51-dBm Doherty RF power amplifier and a 25 MHz mixed test signal were utilized to validate the performance of the ARBFNN nonlinear model and predistorter. The validation results illustrated that the ARBFNN nonlinear model outperforms the memory polynomial (MP) model and the real-valued time-delay neural network (RVTDNN) model with 3 and 5 dB improvements in the normalized mean square error respectively. The ARBFNN predistorter exhibits a significant improvement over the RVTDNN predistorter and MP predistorter in the suppression of the out-of-band spectral regrowth.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Augmented Phase-Normalized Recurrent Neural Network for RF Power Amplifier Linearization
    Fischer-Buhner, Arne
    Anttila, Lauri
    Turunen, Matias
    Gomony, Manil Dev
    Valkama, Mikko
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2025, 73 (01) : 412 - 422
  • [2] RF Power Amplifier Linearization in Professional Mobile Radio Communications Using Artificial Neural Networks
    Gracia Saez, Raul
    Medrano Marques, Nicolas
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (04) : 3060 - 3070
  • [3] An adjustable linearization for RF power amplifier
    Yue, Kai
    Ma, Xubiao
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS, PTS 1-4, 2013, 241-244 : 703 - 708
  • [4] Behavioral Modeling and Digital Predistortion Linearization for Wideband RF Power Amplifiers with Neural Networks
    Liu, Taijun
    9TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOL. 1, (ICMMT 2016), 2016, : 316 - 316
  • [5] An Efficient Deep Neural Network Structure for RF Power Amplifier Linearization
    Fawzy, Abdelwahab
    Sun, Sumei
    Lim, Teng Joon
    Guo, Yong Xin
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [6] A New RF Power Amplifier Linearization Method
    Mao, Zhong-Yang
    Wu, Xiao-jun
    Lu, Fa-Ping
    Fan, Min
    Mao, Zhong-Yang
    Liu, Chuan-Hui
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION AND SENSOR NETWORKS (WCSN 2016), 2016, 44 : 11 - 14
  • [7] Cartesian feedback for RF power amplifier linearization
    Dawson, JL
    Lee, TH
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 361 - 366
  • [8] Doherty Power Amplifier Distortion Correction Using an RF Linearization Amplifier
    Hu, Yushi
    Boumaiza, Slim
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (05) : 2246 - 2257
  • [9] Model Matching Approach in RF Power Amplifier Linearization
    Magana, Mario E.
    Bogya, Robert
    Schuessele, Lothar
    WIRELESS PERSONAL COMMUNICATIONS, 2009, 48 (03) : 395 - 409
  • [10] A digital approach to efficient RF power amplifier linearization
    DAndrea, AN
    Lottici, V
    Reggiannini, R
    GLOBECOM 97 - IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, CONFERENCE RECORD, VOLS 1-3, 1997, : 77 - 81