GLOBAL SENSITIVITY ANALYSIS OF NONLINEAR MATHEMATICAL MODELS - AN IMPLEMENTATION OF TWO COMPLEMENTING VARIANCE-BASED ALGORITHMS

被引:0
|
作者
Henkel, Thomas [1 ]
Wilson, Heike [1 ]
Krug, Wilfried [1 ]
机构
[1] DUALIS GmbH IT Solut, D-01219 Dresden, Germany
关键词
DESIGNS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new approach for a global sensitivity analysis of nonlinear mathematical models is presented using the information provided by two complementing variance-based methods. As a first step, the model is evaluated applying a shared sampling strategy for both methods based on Sobol's quasi-random sequences. Then, total sensitivity indices are estimated in a second step using the Sobol'-Saltelli method whereas first-order sensitivity indices are concurrently computed using a modified version of the well-known Fourier Amplitude Sensitivity Test. Although the analysis is focused on the calculation of total sensitivity indices, first-order sensitivity indices and thus information about the main effects of model input parameters can be obtained at no extra computational cost. Another advantage of this approach is that data of previous model evaluations can be reused for a new, more precise sensitivity analysis. The capability and performance of the method is investigated using an analytical test function.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation
    Dai, Heng
    Ye, Ming
    [J]. JOURNAL OF HYDROLOGY, 2015, 528 : 286 - 300
  • [2] An effective approximation for variance-based global sensitivity analysis
    Zhang, Xufang
    Pandey, Mahesh D.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2014, 121 : 164 - 174
  • [3] A new variance-based global sensitivity analysis technique
    Wei, Pengfei
    Lu, Zhenzhou
    Song, Jingwen
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (11) : 2540 - 2551
  • [4] Variance-Based Global Sensitivity Analysis for Power Systems
    Ni, Fei
    Nijhuis, Michiel
    Nguyen, Phuong H.
    Cobben, Joseph F. G.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (02) : 1670 - 1682
  • [5] Asymptotic Analysis for the Variance-Based Global Sensitivity Indices
    Bokov, Pavel M.
    [J]. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2012, 2012
  • [6] Variance-based sensitivity analysis of tuberculosis transmission models
    Sumner, Tom
    White, Richard G.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (196)
  • [7] EXTREME LEARNING MACHINES FOR VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS
    Darges, John E.
    Alexanderian, Alen
    Gremaud, Pierre A.
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2024, 14 (04) : 83 - 103
  • [8] Variance-based Sensitivity Analyses of Piezoelectric Models
    Lahmer, T.
    Ilg, J.
    Lerch, R.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 106 (02): : 105 - 126
  • [9] Variance-based global sensitivity analysis for fuzzy random structural systems
    Javidan, Mohammad Mahdi
    Kim, Jinkoo
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2019, 34 (07) : 602 - 615
  • [10] Variance-based sensitivity analysis of model outputs using surrogate models
    Shahsavani, D.
    Grimvall, A.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (06) : 723 - 730