Integrability of a class of N-dimensional Lotka-Volterra and Kolmogorov systems

被引:3
|
作者
Llibre, Jaume [1 ]
Ramirez, Rafael [2 ]
Ramirez, Valentin [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Avinguda Dels Paisos Catalans 26, Tarragona 43007, Catalonia, Spain
[3] Univ Autonoma Barcelona, Barcelona 08193, Catalonia, Spain
基金
欧盟地平线“2020”;
关键词
Kolmogorov ordinary differential equations; May-Leonard model; Lotka-Volterra systems; Jacobi multiplier; Center problem; Completely integrable ordinary differential equations;
D O I
10.1016/j.jde.2020.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the integrability of an N-dimensional differential Kolmogorov systems of the form (x) over dot(j) = x(j) (a(j) + Sigma(N)(k=1) a(jk)x(k)) + x(j)Psi(x(1), ..., x(N)), j = 1, ..., N, where a(j), and a(jk) are constants for j, k = 1, ..., N and Psi(x(1), ..., x(N)) is a homogeneouspolynomial of degree n > 2, with either one additional invariant hyperplane, or with one exponential factor. We also study the integrability of the N-dimensional classical Lotka-Volterra systems (when Psi(x(1), ..., x(N)) = 0). In particular we consider the integrability of the asymmetric May-Leonard systems. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:2503 / 2531
页数:29
相关论文
共 50 条