Strong mixing properties of max-infinitely divisible random fields

被引:22
|
作者
Dombry, Clement [1 ]
Eyi-Minko, Frederic [1 ]
机构
[1] Univ Poitiers, CNRS, UMR 6086, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
Absolute regularity coefficient; Max-infinitely divisible random field; Max-stable random field; Central limit theorem for weakly dependent random field; CENTRAL LIMIT-THEOREM; ERGODIC PROPERTIES; SAMPLE;
D O I
10.1016/j.spa.2012.06.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let eta = (eta(t))(t is an element of T) be a sample continuous max-infinitely random field on a locally compact metric space T. For a closed subset S subset of T, we denote by eta(S) the restriction of eta to S. We consider beta(S-1, S-2) the absolute regularity coefficient between eta(S1) and eta(S2), where S-1, S-2 are two disjoint closed subsets of T. Our main result is a simple upper bound for beta(S-1, S-2) involving the exponent measure mu of eta: we prove that beta(S-1, S-2) <= 2 integral P[eta not less than(S1) f, eta not less than(S2) f]mu(df), where f not less than(S) g means that there exists s is an element of S such that f(s) >= g(s). If eta is a simple max-stable random field, the upper bound is related to the so-called extremal coefficients: for countable disjoint sets S-1 and S-2, we obtain beta(S-1, S-2) <= 4 Sigma((s1,s2) is an element of S1 x S2) (2 - theta(s(1), s(2))), where theta(s(1), s(2)) is the pair extremal coefficient. As an application, we show that these new estimates entail a central limit theorem for stationary max-infinitely divisible random fields on Z(d). In the stationary max-stable case, we derive the asymptotic normality of three simple estimators of the pair extremal coefficient. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3790 / 3811
页数:22
相关论文
共 50 条
  • [1] Regular conditional distributions of continuous max-infinitely divisible random fields
    Dombry, Clement
    Eyi-Minko, Frederic
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 21
  • [2] Ergodic properties of max-infinitely divisible processes
    Kabluchko, Zakhar
    Schlather, Martin
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (03) : 281 - 295
  • [3] Mixing Properties of Multivariate Infinitely Divisible Random Fields
    Passeggeri, Riccardo
    Veraart, Almut E. D.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (04) : 1845 - 1879
  • [4] Mixing Properties of Multivariate Infinitely Divisible Random Fields
    Riccardo Passeggeri
    Almut E. D. Veraart
    [J]. Journal of Theoretical Probability, 2019, 32 : 1845 - 1879
  • [5] GEOMETRIC GAMMA MAX-INFINITELY DIVISIBLE MODELS
    Satheesh, S.
    Sandhya, E.
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2009, 5 (01): : 99 - 105
  • [6] Exact Simulation of Max-Infinitely Divisible Processes
    Zhong, Peng
    Husera, Raphael
    Opitz, Thomas
    [J]. ECONOMETRICS AND STATISTICS, 2024, 30 : 96 - 109
  • [7] A new family of bivariate max-infinitely divisible distributions
    Enkelejd Hashorva
    [J]. Metrika, 2008, 68 : 289 - 304
  • [8] Max-infinitely divisible models and inference for spatial extremes
    Huser, Raphael
    Opitz, Thomas
    Thibaud, Emeric
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (01) : 321 - 348
  • [9] A new family of bivariate max-infinitely divisible distributions
    Hashorva, Enkelejd
    [J]. METRIKA, 2008, 68 (03) : 289 - 304
  • [10] A Hierarchical Max-Infinitely Divisible Spatial Model for Extreme Precipitation
    Bopp, Gregory P.
    Shaby, Benjamin A.
    Huser, Raphael
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 93 - 106