Binding logic: Proofs and models

被引:7
|
作者
Dowek, G
Hardin, T
Kirchner, C
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
[2] UPMC, F-75015 Paris, France
[3] LORIA, F-54600 Villers Les Nancy, France
[4] INRIA, F-54600 Villers Les Nancy, France
关键词
D O I
10.1007/3-540-36078-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define an extension of predicate logic, called Binding Logic, where variables can be bound in terms and in propositions. We introduce a notion of model for this logic and prove a soundness and completeness theorem for it. This theorem is obtained by encoding this logic back into predicate logic and using the classical soundness and completeness theorem there.
引用
收藏
页码:130 / 144
页数:15
相关论文
共 50 条
  • [1] The Logic of Separation Logic: Models and Proofs
    de Boer, Frank S.
    Hiep, Hans-Dieter A.
    de Gouw, Stijn
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 407 - 426
  • [2] On symbolic models for Single-Conclusion Logic of Proofs
    Krupski, V. N.
    [J]. SBORNIK MATHEMATICS, 2011, 202 (5-6) : 683 - 695
  • [3] Normalization of Terms in Sharp Models of Logic of Proofs LP
    Krupski, V. N.
    [J]. MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2023, 78 (06) : 309 - 312
  • [4] Normalization of Terms in Sharp Models of Logic of Proofs LP
    V. N. Krupski
    [J]. Moscow University Mathematics Bulletin, 2023, 78 : 309 - 312
  • [5] LOGIC OF PROOFS
    ARTEMOV, S
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1994, 67 (1-3) : 29 - 59
  • [6] Refutations, proofs, and models in the modal logic K4
    Skura T.
    [J]. Studia Logica, 2002, 70 (2) : 193 - 204
  • [7] A Logic of Proofs for Differential Dynamic Logic
    Fulton, Nathan
    Platzer, Andre
    [J]. PROCEEDINGS OF THE 5TH ACM SIGPLAN CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS (CPP'16), 2016, : 110 - 121
  • [8] Symmetric logic of proofs
    Artemov, Sergei
    [J]. PILLARS OF COMPUTER SCIENCE, 2008, 4800 : 58 - 71
  • [9] A logic of interactive proofs
    Lehnherr, David
    Ognjanovic, Zoran
    Studer, Thomas
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2022, 32 (08) : 1645 - 1658
  • [10] Referential logic of proofs
    Krupski, Vladimir N.
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 357 (1-3) : 143 - 166