Automatic TEM Image Analysis of Membranes for 2D Crystal Detection

被引:4
|
作者
Karathanou, Argyro [1 ]
Coudray, Nicolas [1 ]
Hermann, Gilles [1 ]
Buessler, Jean-Luc [1 ]
Urban, Jean-Philippe [1 ]
机构
[1] Univ Haute Alsace, MIPS, Mulhouse, France
来源
关键词
Image processing; Automated TEM; Image segmentation; Sample characterization; 2-DIMENSIONAL CRYSTALS; PROTEINS;
D O I
10.1007/978-1-4419-5913-3_37
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
TEM image processing tools are devised for the assessment of 2D-crystallization experiments. The algorithms search for the presence and assess the quality of crystalline membranes. The retained scenario emulates the decisions of a microscopist in selecting targets and assessing the sample. Crystallinity is automatically assessed through the diffraction patterns of high magnification images acquired on pertinent regions selected at lower magnifications. Further algorithms have been developed for membrane characterization. Tests on images of different samples, acquired on different microscopes led to good results.
引用
收藏
页码:327 / 333
页数:7
相关论文
共 50 条
  • [1] Geometric 2D image analysis for automatic visual inspection
    Liu, Y
    Rodrigues, MA
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, 1999, (465): : 656 - 660
  • [2] CRYSTAL IMAGE ANALYSIS USING 2D SYNCHROSQUEEZED TRANSFORMS
    Yang, Haizhao
    Lu, Jianfeng
    Ying, Lexing
    [J]. MULTISCALE MODELING & SIMULATION, 2015, 13 (04): : 1542 - 1572
  • [3] Automatic Adaptation of Image Analysis Models for 2D Landscape Objects to a Coarser Image Resolution
    Heuwold, Janet
    Pakzad, Kian
    Heipke, Christian
    [J]. PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2008, (03): : 197 - 206
  • [4] 2D photonic crystal membranes for optical biosensors
    Zecca, D.
    Magno, G.
    Grande, M.
    Petruzzelli, V.
    D'Orazio, A.
    Qualtieri, A.
    Stomeo, T.
    Prieto-Simon, B.
    Voelcker, N. H.
    De Vittorio, M.
    [J]. 2014 FOTONICA AEIT ITALIAN CONFERENCE ON PHOTONICS TECHNOLOGIES, 2014,
  • [5] Detection and characterization of junctions in a 2D image
    Bergevin, R
    Bubel, A
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2004, 93 (03) : 288 - 309
  • [6] 2D image population analysis
    Duroure, C.
    Larsen, H. R.
    Isaka, H.
    Personne, P.
    [J]. ATMOSPHERIC RESEARCH, 1994, 34 (1-4) : 195 - 205
  • [7] Automatic Shadow Detection in 2D Ultrasound Images
    Meng, Qingjie
    Baumgartner, Christian
    Sinclair, Matthew
    Housden, James
    Rajchl, Martin
    Gomez, Alberto
    Hou, Benjamin
    Toussaint, Nicolas
    Zimmer, Veronika
    Tan, Jeremy
    Matthew, Jacqueline
    Rueckert, Daniel
    Schnabel, Julia
    Kainz, Bernhard
    [J]. DATA DRIVEN TREATMENT RESPONSE ASSESSMENT AND PRETERM, PERINATAL, AND PAEDIATRIC IMAGE ANALYSIS, 2018, 11076 : 66 - 75
  • [8] Automatic Constraint Detection for 2D Layout Regularization
    Jiang, Haiyong
    Nan, Liangliang
    Yan, Dong-Ming
    Dong, Weiming
    Zhang, Xiaopeng
    Wonka, Peter
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (08) : 1933 - 1944
  • [9] Fault Detection in Automatic Manufacturing Processes via 2D Image Analysis Using a Combined CNN-LSTM Model
    Yu, Na Hyeon
    Baek, Sujeong
    [J]. ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING AND LOGISTICS SYSTEMS: TURNING IDEAS INTO ACTION, APMS 2022, PT I, 2022, 663 : 11 - 18
  • [10] Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis
    Lu, Jianfeng
    Wirth, Benedikt
    Yang, Haizhao
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 89 : 194 - 210