Semiparametric estimation for accelerated failure time mixture cure model allowing non-curable competing risk
被引:2
|
作者:
Wang, Yijun
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R ChinaEast China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R China
Wang, Yijun
[1
]
Zhang, Jiajia
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Epidemiol & Biostat, Columbia, SC USAEast China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R China
Zhang, Jiajia
[2
]
Tang, Yincai
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R ChinaEast China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R China
Tang, Yincai
[1
]
机构:
[1] East China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R China
[2] Univ South Carolina, Dept Epidemiol & Biostat, Columbia, SC USA
The mixture cure model is the most popular model used to analyse the major event with a potential cure fraction. But in the real world there may exist a potential risk from other non-curable competing events. In this paper, we study the accelerated failure time model with mixture cure model via kernel-based nonparametric maximum likelihood estimation allowing non-curable competing risk. An EM algorithm is developed to calculate the estimates for both the regression parameters and the unknown error densities, in which a kernel-smoothed conditional profile likelihood is maximised in the M-step, and the resulting estimates are consistent. Its performance is demonstrated through comprehensive simulation studies. Finally, the proposed method is applied to the colorectal clinical trial data.
机构:
Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
East China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R ChinaZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
Wang, Yijun
Zhang, Jiajia
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USAZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
Zhang, Jiajia
Cai, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USAZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
Cai, Chao
Lu, Wenbin
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USAZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
Lu, Wenbin
Tang, Yincai
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200062, Peoples R ChinaZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
机构:
East China Norm Univ, Sch Stat, KLATASDS MOE, Shanghai, Peoples R China
Univ South Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USAEast China Norm Univ, Sch Stat, KLATASDS MOE, Shanghai, Peoples R China
Wang, Yijun
Tang, Yincai
论文数: 0引用数: 0
h-index: 0
机构:
East China Norm Univ, Sch Stat, KLATASDS MOE, Shanghai, Peoples R ChinaEast China Norm Univ, Sch Stat, KLATASDS MOE, Shanghai, Peoples R China
Tang, Yincai
Zhang, Jiajia
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USAEast China Norm Univ, Sch Stat, KLATASDS MOE, Shanghai, Peoples R China
机构:
Univ S Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USAUniv S Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USA
Zhang, Jiajia
Peng, Yingwei
论文数: 0引用数: 0
h-index: 0
机构:
Queens Univ, Dept Community Hlth & Epidemiol, Kingston, ON K7L 3N6, CanadaUniv S Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USA
Peng, Yingwei
Li, Haifen
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USA
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R ChinaUniv S Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USA