A local color descriptor for efficient scene-object recognition

被引:0
|
作者
Bigorgne, E [1 ]
Achard, C [1 ]
Devars, J [1 ]
机构
[1] Univ Paris 06, Lab Instruments & Syst Ile de France, F-75252 Paris, France
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This Paper presents an effective use of local descriptors for object or scene recognition and indexing. This approach is in keeping with model-based recognition systems and consists in an extension of a standard point to point matching between two images. Aiming at this, we address the use of Full-Zernike moments as a reliable local characterization of the image signal. A fundamental characteristic of the used descriptors is then their ability to "absorb" a given set of potential image modification. Their design calls principally for the theory of invariants. A built-in invariance to similarities allows one to manage narrow bounded perspective transformations. Moreover we provide a study of the substantial and costless contribution of the use of color information. In order to achieve photometric invariance, different types of normalization are evaluated through a model-based object recognition task.
引用
收藏
页码:440 / 445
页数:6
相关论文
共 50 条
  • [1] Robust Local Descriptor for Color Object Recognition
    Hamdini, Rabah
    Diffellah, Nacira
    Namane, Abderrahmane
    [J]. TRAITEMENT DU SIGNAL, 2019, 36 (06) : 471 - 482
  • [2] Local Color Descriptor for Object Recognition across Illumination Changes
    Song, Xiaohu
    Muselet, Damien
    Tremeau, Alain
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2009, 5807 : 598 - 605
  • [3] Multilinear Supervised Neighborhood Embedding of a Local Descriptor Tensor for Scene/Object Recognition
    Han, Xian-Hua
    Chen, Yen-Wei
    Ruan, Xiang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) : 1314 - 1326
  • [4] Scene priming and location priming in scene-object consistency effects
    Heise, N.
    Ansorge, U.
    [J]. PERCEPTION, 2014, 43 (01) : 108 - 108
  • [5] Weber Local Descriptor based Object Recognition
    Ahilapriyadharshini, R.
    Arivazhagan, S.
    Gowthami, M.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2012, : 115 - 119
  • [6] Evaluation of color descriptors for object and scene recognition
    van de Sande, Koen E. A.
    Gevers, Theo
    Snoek, Cees G. M.
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2463 - 2470
  • [7] Evaluating Color Descriptors for Object and Scene Recognition
    van de Sande, Koen E. A.
    Gevers, Theo
    Snoek, Cees G. M.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1582 - 1596
  • [8] Quaternion generic Fourier descriptor for color object recognition
    Li, Heng
    Liu, Zhiwen
    Huang, Yali
    Shi, Yonggang
    [J]. PATTERN RECOGNITION, 2015, 48 (12) : 3895 - 3903
  • [9] A SIFT-Color Moments Descriptor For Object Recognition
    Bo, Lu
    Whangbo, TaegKeun
    [J]. 2014 INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS), 2014,
  • [10] Contrast context histogram - An efficient discriminating local descriptor for object recognition and image matching
    Huang, Chun-Rong
    Chen, Chu-Song
    Chung, Pau-Choo
    [J]. PATTERN RECOGNITION, 2008, 41 (10) : 3071 - 3077