Operative Protocol for Testing the Efficacy of Nasal Filters in Preventing Airborne Transmission of SARS-CoV-2

被引:3
|
作者
Semeraro, Sabrina [1 ]
Gaetano, Anastasia Serena [1 ,2 ]
Zupin, Luisa [3 ]
Poloni, Carlo [1 ,4 ]
Merlach, Elvio [2 ]
Greco, Enrico [1 ,2 ,5 ]
Licen, Sabina [1 ,2 ]
Fontana, Francesco [6 ]
Leo, Silvana [7 ]
Miani, Alessandro [5 ,8 ]
Broccolo, Francesco [5 ,9 ,10 ]
Barbieri, Pierluigi [1 ,2 ,5 ]
机构
[1] Univ Trieste, INSTM Natl Interuniv Consortium Mat Sci & Tech, Res Unit, I-34127 Trieste, Italy
[2] Univ Trieste, Dept Chem & Pharmaceut Sci, Via L Giorgieri 1, I-34127 Trieste, Italy
[3] IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Via dellIstria 65-1, I-34137 Trieste, Italy
[4] Univ Trieste, Dept Engn & Architecture, Via A Valerio 10, I-34127 Trieste, Italy
[5] SIMA Societa Italiana Med Ambientale, Viale Porta Vercellina 9, I-20123 Milan, Italy
[6] Azienda Sanitaria Univ Giuliano Isontina, Osped San Polo, Via Luigi Galvani 1, I-34074 Monfalcone, Italy
[7] Vito Fazzi Hosp, Div Oncol, P za Muratore 1, I-73100 Lecce, Italy
[8] Univ Milan, Dept Environm Sci & Policy, Via Festa Perdono 7, I-20122 Milan, Italy
[9] Univ Milano Bicocca, Sch Med, Dept Med & Surg, I-20900 Monza, Italy
[10] Cerba HealthCare Italia, Via Durini 14, I-20122 Milan, Italy
关键词
SARS-CoV-2 airborne transmission; endonasal filters; viral filtration efficacy protocol; bio-gel AgNP filters;
D O I
10.3390/ijerph192113790
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background: Standardized methods for testing Viral Filtration Efficiency (VFE) of tissues and devices are lacking and few studies are available on aerosolizing, sampling and assessing infectivity of SARS-CoV-2 in controlled laboratory settings. NanoAg-coated endonasal filters appear a promising aid for lowering viable virus inhalation in both adult and younger populations (e.g., adolescents). Objective: to provide an adequate method for testing SARS-CoV-2 bioaerosol VFE of bio-gel Ag nanoparticles endonasal filters, by a model system, assessing residual infectivity as cytopathic effect and viral proliferation on in vitro cell cultures. Methods: A SARS-CoV-2 aerosol transmission chamber fed by a BLAM aerosol generator produces challenges (from very high viral loads (10(5) PFU/mL) to lower ones) for endonasal filters positioned in a Y shape sampling port connected to a Biosampler. An aerosol generator, chamber and sampler are contained in a class II cabinet in a BSL3 facility. Residual infectivity is assessed from aliquots of liquid collecting bioaerosol, sampled without and with endonasal filters. Cytopathic effect as plaque formation and viral proliferation assessed by qRT-PCR on Vero E6 cells are determined up to 7 days post inoculum. Results: Each experimental setting is replicated three times and basic statistics are calculated. Efficiency of aerosolization is determined as difference between viral load in the nebulizer and in the Biosampler at the first day of experiment. Efficiency of virus filtration is calculated as RNA viral load ratio in collected bioaerosol with and without endonasal filters at the day of the experiment. Presence of infectious virus is assessed by plaque forming unit assay and RNA viral load variations. Conclusions: A procedure and apparatus for assessing SARS-CoV-2 VFE for endonasal filters is proposed. The apparatus can be implemented for more sophisticated studies on contaminated aerosols.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2
    Ueki, Hiroshi
    Furusawa, Yuri
    Iwatsuki-Horimoto, Kiyoko
    Imai, Masaki
    Kabata, Hiroki
    Nishimura, Hidekazu
    Kawaoka, Yoshihiro
    [J]. MSPHERE, 2020, 5 (05):
  • [2] Preventing Airborne Transmission of SARS-CoV-2 in Hospitals and Nursing Homes
    Ahlawat, Ajit
    Mishra, Sumit Kumar
    Birks, John W.
    Costabile, Francesca
    Wiedensohler, Alfred
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (22)
  • [3] Airborne transmission of SARS-CoV-2
    Prather, Kimberly A.
    Marr, Linsey C.
    Schooley, Robert T.
    McDiarmid, Melissa A.
    Wilson, Mary E.
    Milton, Donald K.
    [J]. SCIENCE, 2020, 370 (6514) : 303 - 304
  • [4] Mitigating airborne transmission of SARS-CoV-2
    Addleman, Sarah
    Leung, Victor
    Asadi, Leyla
    Sharkawy, Abdu
    McDonald, Jennifer
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 2021, 193 (31) : E1234 - E1236
  • [5] Mitigating airborne transmission of SARS-CoV-2
    Addleman, Sarah
    Leung, Victor
    Asadi, Leyla
    Sharkawy, Abdu
    McDonald, Jennifer
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 2021, 193 (26) : E1010 - E1011
  • [6] On airborne transmission and control of SARS-Cov-2
    Yao, Maosheng
    Zhang, Lu
    Ma, Jianxin
    Zhou, Lian
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 731
  • [7] Airborne Transmission of the SARS-CoV-2 Delta Variant and the SARS-CoV-2 Omicron Variant
    Lee, Byung Uk
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2022, 22 (01)
  • [8] Coronavirus's (SARS-CoV-2) airborne transmission
    Handiso, Tilahun Beyene
    Jifar, Markos Selamu
    Nuriye Hagisso, Shemsu
    [J]. SAGE OPEN MEDICINE, 2022, 10
  • [9] SARS-CoV-2 Droplet and Airborne Transmission Heterogeneity
    Baselga, Marta
    Gueemes, Antonio
    Alba, Juan J.
    Schuhmacher, Alberto J.
    [J]. JOURNAL OF CLINICAL MEDICINE, 2022, 11 (09)
  • [10] Airborne transmission of SARS-CoV-2 via aerosols
    Comber, Laura
    Murchu, Eamon
    Drummond, Linda
    Carty, Paul G.
    Walsh, Kieran A.
    De Gascun, Cillian F.
    Connolly, Maire A.
    Smith, Susan M.
    O'Neill, Michelle
    Ryan, Mairin
    Harrington, Patricia
    [J]. REVIEWS IN MEDICAL VIROLOGY, 2021, 31 (03)